Extremal energies of trees with a given domination number

被引:17
作者
Xu, Kexiang [1 ]
Feng, Lihua [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China
[2] Cent South Univ, Dept Math, Changsha, Hunan, Peoples R China
[3] Shandong Inst Business & Technol, Sch Math, Yantai, Peoples R China
基金
中国博士后科学基金;
关键词
Energy of graph; Tree; Domination number; Matching number; MINIMAL ENERGIES; MAXIMUM;
D O I
10.1016/j.laa.2010.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The energy of a graph is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix. Let T(n, gamma) be the set of trees of order n and with domination number gamma. In this paper, we characterize the tree from T(n, gamma) with the minimal energy, and determine the tree from T(n, gamma) where n = k gamma with maximal energy for k = 2, 3, n/4, n/3, n/2. (C) 2010 Elsevier Inc. All rights reserved
引用
收藏
页码:2382 / 2393
页数:12
相关论文
共 28 条
  • [1] [Anonymous], ENERGY GRAPH OLD NEW
  • [2] [Anonymous], DISCRETE MATH
  • [3] [Anonymous], 1980, PUBL I MATH BEOGRAD
  • [4] [Anonymous], PUBL I MATH BEOGRAD
  • [5] [Anonymous], 2009, Analysis of Complex Networks: From Biology to Linguistics, DOI DOI 10.1002/9783527627981.CH7
  • [6] Bondy J. A., 1976, Graduate Texts in Mathematics, V290
  • [7] Minimizing the Laplacian eigenvalues for trees with given domination number
    Feng, Lihua
    Yu, Guihai
    Li, Qiao
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 648 - 655
  • [8] Fink J. F., 1985, Periodica Mathematica Hungarica, V16, P287, DOI 10.1007/BF01848079
  • [9] Frucht R., 1970, Aequationes Math., V4, P322, DOI DOI 10.1007/BF01844162
  • [10] ON THE THEORY OF THE MATCHING POLYNOMIAL
    GODSIL, CD
    GUTMAN, I
    [J]. JOURNAL OF GRAPH THEORY, 1981, 5 (02) : 137 - 144