Minimum Manhattan Network is NP-Complete

被引:12
|
作者
Chin, Francis Y. L. [2 ]
Guo, Zeyu [1 ]
Sun, He [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Univ Hong Kong, Dept Comp Sci, Pokfulam, Hong Kong, Peoples R China
关键词
Minimum Manhattan networks; 3-SAT; NP-completeness;
D O I
10.1007/s00454-011-9342-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set T of n points in a"e(2), a Manhattan network on T is a graph G with the property that for each pair of points in T, G contains a rectilinear path between them of length equal to their distance in the L (1)-metric. The minimum Manhattan network problem is to find a Manhattan network of minimum length, i.e., minimizing the total length of the line segments in the network. In this paper, we prove that the decision version of the MMN problem is strongly NP-complete, using a reduction from the well-known 3-SAT problem, which requires a number of gadgets. The gadgets have similar structures, but play different roles in simulating a 3-CNF formula.
引用
收藏
页码:701 / 722
页数:22
相关论文
共 50 条
  • [11] Elastic image matching is NP-complete
    Keysers, D
    Unger, W
    PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 445 - 453
  • [12] Border Basis Detection is NP-complete
    Ananth, Prabhanjan V.
    Dukkipati, Ambedkar
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 11 - 18
  • [13] Universal solutions for NP-complete problems
    Portier, N
    THEORETICAL COMPUTER SCIENCE, 1998, 201 (1-2) : 137 - 150
  • [14] New NP-complete partition problems
    Saeednia, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) : 2092 - 2094
  • [15] Satogaeri, Hebi and Suraromu are NP-Complete
    Kanehiro, Shohei
    Takenaga, Yasuhiko
    3RD INTERNATIONAL CONFERENCE ON APPLIED COMPUTING AND INFORMATION TECHNOLOGY (ACIT 2015) 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND INTELLIGENCE (CSI 2015), 2015, : 46 - 51
  • [16] CLIQUE-WIDTH IS NP-COMPLETE
    Fellows, Michael R.
    Rosamond, Frances A.
    Rotics, Udi
    Szeider, Stefan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (02) : 909 - 939
  • [17] Optimal Jacobian accumulation is NP-complete
    Naumann, Uwe
    MATHEMATICAL PROGRAMMING, 2008, 112 (02) : 427 - 441
  • [18] Zen Puzzle Garden is NP-complete
    Houston, Robin
    White, Joseph
    Amos, Martyn
    INFORMATION PROCESSING LETTERS, 2012, 112 (03) : 106 - 108
  • [19] Optimal Jacobian accumulation is NP-complete
    Uwe Naumann
    Mathematical Programming, 2008, 112 : 427 - 441
  • [20] The Cophylogeny Reconstruction Problem Is NP-Complete
    Ovadia, Y.
    Fielder, D.
    Conow, C.
    Libeskind-Hadas, R.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (01) : 59 - 65