On the modularity of reducible mod l Galois representations

被引:0
作者
Billerey, Nicolas [1 ,2 ]
Menares, Ricardo [3 ]
机构
[1] Univ Clermont Auvergne, Univ Blaise Pascal, Math Lab, BP 10448, F-63000 Clermont Ferrand, France
[2] CNRS, UMR 6620, LM, F-63171 Aubiere, France
[3] Pontificia Univ Catolica Valparaiso, Inst Math, Blanco Viel 596, Valparaiso, Chile
关键词
BRUN-TITCHMARSH THEOREM; FORMS; PRIMES; WEIGHT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an odd, semisimple, reducible, 2-dimensional mod l Galois representation, we investigate the possible levels of the modular forms giving rise to it. When the representation is the direct sum of the trivial character and a power of the mod l cyclotomic character, we are able to characterize the primes that can arise as levels of the associated newforms. As an application, we determine a new explicit lower bound for the highest degree among the fields of coefficients of newforms of trivial Nebentypus and prime level. The bound is valid in a subset of the primes with natural (lower) density at least 3/4.
引用
收藏
页码:15 / 41
页数:27
相关论文
共 46 条
[1]   STRONG MODULARITY OF REDUCIBLE GALOIS REPRESENTATIONS [J].
Billerey, Nicolas ;
Menares, Ricardo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (02) :967-986
[2]   On Lifting and Modularity of Reducible Residual Galois Representations Over Imaginary Quadratic Fields [J].
Berger, Tobias ;
Klosin, Krzysztof .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) :10525-10562
[3]   An effective isomorphy criterion for mod l Galois representations [J].
Takai, Yuuki .
JOURNAL OF NUMBER THEORY, 2011, 131 (08) :1409-1419
[4]   Modularity of trianguline Galois representations [J].
Bellovin, Rebecca .
FORUM OF MATHEMATICS SIGMA, 2024, 12
[5]   Oddness of residually reducible Galois representations [J].
Berger, Tobias .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (05) :1329-1345
[6]   Modularity of Galois Representations and Langlands Functoriality [J].
Newton, James .
JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2022, 102 (3) :861-884
[7]   ON SERRE'S CONJECTURE FOR MOD l GALOIS REPRESENTATIONS OVER TOTALLY REAL FIELDS [J].
Buzzard, Kevin ;
Diamond, Fred ;
Jarvis, Frazer .
DUKE MATHEMATICAL JOURNAL, 2010, 155 (01) :105-161
[8]   Mod 2 homology for GL(4) and Galois representations [J].
Ash, Avner ;
Gunnells, Paul E. ;
McConnell, Mark .
JOURNAL OF NUMBER THEORY, 2015, 146 :4-22
[9]   On the local constancy of certain mod p Galois representations [J].
Ganguli, Abhik ;
Kumar, Suneel .
RESEARCH IN NUMBER THEORY, 2024, 10 (02)
[10]   Non-optimal levels of some reducible mod p modular representations [J].
Deo, Shaunak, V .
ADVANCES IN MATHEMATICS, 2025, 461