Finite-size scaling of synchronized oscillation on complex networks

被引:36
|
作者
Hong, Hyunsuk [1 ,2 ]
Park, Hyunggyu [3 ]
Tang, Lei-Han [4 ]
机构
[1] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, RINPAC, Jeonju 561756, South Korea
[3] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
[4] Hong Kong Baptist Univ, Dept Phys, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1103/PhysRevE.76.066104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The onset of synchronization in a system of random frequency oscillators coupled through a random network is investigated. Using a mean-field approximation, we characterize sample-to-sample fluctuations for networks of finite size, and derive the corresponding scaling properties in the critical region. For scale-free networks with the degree distribution P(k) similar to k(-gamma) at large k, we found that the finite-size exponent (nu) over bar takes on the value 5/2 when gamma > 5, the same as in the globally coupled Kuramoto model. For highly heterogeneous networks (3 <gamma < 5), (nu) over bar and the order parameter exponent beta depend on gamma. The analytical expressions for these exponents obtained from the mean-field theory are shown to be in excellent agreement with data from extensive numerical simulations.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Disorder averaging and finite-size scaling
    Bernardet, K
    Pázmándi, F
    Batrouni, GG
    PHYSICAL REVIEW LETTERS, 2000, 84 (19) : 4477 - 4480
  • [22] Finite-size scaling of the quasispecies model
    Campos, PRA
    Fontanari, JF
    PHYSICAL REVIEW E, 1998, 58 (02): : 2664 - 2667
  • [23] Finite-size scaling of the quasispecies model
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (2-B):
  • [24] ORDER PARAMETER AND FINITE-SIZE SCALING
    TAKANO, H
    SAITO, Y
    PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (06): : 1369 - 1376
  • [25] Finite-size scaling of meson propagators
    Damgaard, PH
    Diamantini, MC
    Hernández, P
    Jansen, K
    NUCLEAR PHYSICS B, 2002, 629 (1-3) : 445 - 478
  • [26] Finite-size scaling in disordered systems
    Chamati, H
    Korutcheva, E
    Tonchev, NS
    PHYSICAL REVIEW E, 2002, 65 (02): : 1 - 026129
  • [27] Finite-Size Scaling at the Jamming Transition
    Goodrich, Carl P.
    Liu, Andrea J.
    Nagel, Sidney R.
    PHYSICAL REVIEW LETTERS, 2012, 109 (09)
  • [28] Finite-size scaling of kinetic quantities
    Tarasenko, AA
    Nieto, F
    Uebing, C
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (15) : 3437 - 3440
  • [29] Finite-size scaling of eigenstate thermalization
    Beugeling, W.
    Moessner, R.
    Haque, Masudul
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [30] FINITE-SIZE SCALING AND CRITICAL NUCLEATION
    MON, KK
    JASNOW, D
    PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2983 - 2986