Finite-size scaling of synchronized oscillation on complex networks

被引:36
|
作者
Hong, Hyunsuk [1 ,2 ]
Park, Hyunggyu [3 ]
Tang, Lei-Han [4 ]
机构
[1] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, RINPAC, Jeonju 561756, South Korea
[3] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
[4] Hong Kong Baptist Univ, Dept Phys, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1103/PhysRevE.76.066104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The onset of synchronization in a system of random frequency oscillators coupled through a random network is investigated. Using a mean-field approximation, we characterize sample-to-sample fluctuations for networks of finite size, and derive the corresponding scaling properties in the critical region. For scale-free networks with the degree distribution P(k) similar to k(-gamma) at large k, we found that the finite-size exponent (nu) over bar takes on the value 5/2 when gamma > 5, the same as in the globally coupled Kuramoto model. For highly heterogeneous networks (3 <gamma < 5), (nu) over bar and the order parameter exponent beta depend on gamma. The analytical expressions for these exponents obtained from the mean-field theory are shown to be in excellent agreement with data from extensive numerical simulations.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Universal dynamics of mitochondrial networks: a finite-size scaling analysis
    Nahuel Zamponi
    Emiliano Zamponi
    Sergio A. Cannas
    Dante R. Chialvo
    Scientific Reports, 12
  • [12] Universal dynamics of mitochondrial networks: a finite-size scaling analysis
    Zamponi, Nahuel
    Zamponi, Emiliano
    Cannas, Sergio A.
    Chialvo, Dante R.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [13] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [14] FINITE-SIZE SCALING IN A MICROCANONICAL ENSEMBLE
    DESAI, RC
    HEERMANN, DW
    BINDER, K
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 795 - 823
  • [15] FINITE-SIZE SCALING AND PHENOMENOLOGICAL RENORMALIZATION
    NIGHTINGALE, P
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7927 - 7932
  • [16] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2014, 89 (09)
  • [17] Corrected finite-size scaling in percolation
    Li, Jiantong
    Ostling, Mikael
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [18] MAGNETIZATIONS FROM FINITE-SIZE SCALING
    HAMER, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12): : L675 - L683
  • [19] Finite-size scaling in anisotropic systems
    Tonchev, N. S.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [20] Finite-size scaling of critical avalanches
    Yadav, Avinash Chand
    Quadir, Abdul
    Jafri, Haider Hasan
    PHYSICAL REVIEW E, 2022, 106 (01)