Finite-size scaling of synchronized oscillation on complex networks

被引:36
|
作者
Hong, Hyunsuk [1 ,2 ]
Park, Hyunggyu [3 ]
Tang, Lei-Han [4 ]
机构
[1] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea
[2] Chonbuk Natl Univ, RINPAC, Jeonju 561756, South Korea
[3] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
[4] Hong Kong Baptist Univ, Dept Phys, Kowloon, Hong Kong, Peoples R China
关键词
D O I
10.1103/PhysRevE.76.066104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The onset of synchronization in a system of random frequency oscillators coupled through a random network is investigated. Using a mean-field approximation, we characterize sample-to-sample fluctuations for networks of finite size, and derive the corresponding scaling properties in the critical region. For scale-free networks with the degree distribution P(k) similar to k(-gamma) at large k, we found that the finite-size exponent (nu) over bar takes on the value 5/2 when gamma > 5, the same as in the globally coupled Kuramoto model. For highly heterogeneous networks (3 <gamma < 5), (nu) over bar and the order parameter exponent beta depend on gamma. The analytical expressions for these exponents obtained from the mean-field theory are shown to be in excellent agreement with data from extensive numerical simulations.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Finite-size scaling in complex networks
    Hong, Hyunsuk
    Ha, Meesoon
    Park, Hyunggyu
    PHYSICAL REVIEW LETTERS, 2007, 98 (25)
  • [2] Extended finite-size scaling of synchronized coupled oscillators
    Choi, Chulho
    Ha, Meesoon
    Kahng, Byungnam
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [3] Finite-size scaling of geometric renormalization flows in complex networks
    Chen, Dan
    Su, Housheng
    Wang, Xiaofan
    Pan, Gui-Jun
    Chen, Guanrong
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [4] Finite-Size Scaling for the Permeability of Discrete Fracture Networks
    Yin, Tingchang
    Man, Teng
    Li, Ling
    Galindo-Torres, Sergio Andres
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (06)
  • [5] Critical Phenomena and Finite-size Scaling in Communication Networks
    Sarkar, Soumik
    Mukherjee, Kushal
    Srivastav, Abhishek
    Ray, Asok
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 271 - 276
  • [6] Finite-size correlation length and violations of finite-size scaling
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02): : 255 - 265
  • [7] Finite-size correlation length and violations of finite-size scaling
    S. Caracciolo
    A. Gambassi
    M. Gubinelli
    A. Pelissetto
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 20 (2): : 255 - 265
  • [8] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [9] Microcanonical Finite-Size Scaling
    Michael Kastner
    Michael Promberger
    Alfred Hüller
    Journal of Statistical Physics, 2000, 99 : 1251 - 1264
  • [10] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264