Multispectral image fusion using super-resolution conditional generative adversarial networks

被引:7
|
作者
Zhang, Junhao [1 ]
Shamsolmoali, Pourya [1 ]
Zhang, Pengpeng [2 ]
Feng, Deying [3 ]
Yang, Jie [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai, Peoples R China
[2] Shanghai Dianji Univ, Sch Elect Informat Engn, Shanghai, Peoples R China
[3] Liaocheng Univ, Sch Mech & Automot Engn, Liaocheng, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
multispectral image; fusion; remote sensing; multispectral-conditional generative adversarial network; PERFORMANCE;
D O I
10.1117/1.JRS.13.022002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In multispectral image fusion scenarios, deep learning has been widely applied. However, the fusion performance and image quality are still restricted by inflexible architecture and supervised learning mode. We proposed multispectral image fusion using super-resolution conditional generative adversarial networks (MS-cGANs) based on conditional cGANs, which produces the fused image through the flexible encode-and-decode procedure. In the proposed network, a least square model is extended to solve the gradients vanishing problem in cGANs. Then, to improve the fusion quality, the multiscale features are used to preserve the details. Furthermore, the image resolution is promoted by adding the perceptual loss in object function and injecting the super-resolution structure into a deconvolution procedure. In experimental results, MS-cGANs demonstrates a significant performance in fusing multispectral images and top-ranking image quality compared with the state-of-the-art methods. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Image super-resolution using conditional generative adversarial network
    Qiao, Jiaojiao
    Song, Huihui
    Zhang, Kaihua
    Zhang, Xiaolu
    Liu, Qingshan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2673 - 2679
  • [2] Positron Image Super-Resolution Using Generative Adversarial Networks
    Xiong, Fang
    Liu, Jian
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    IEEE ACCESS, 2021, 9 : 121329 - 121343
  • [3] PET image super-resolution using generative adversarial networks
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    Yang, Fan
    Dutta, Joyita
    NEURAL NETWORKS, 2020, 125 : 83 - 91
  • [4] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [5] A comparison of Generative Adversarial Networks for image super-resolution
    Cobelli, Patricia
    Nesmachnow, Sergio
    Toutouh, Jamal
    2022 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2022, : 30 - 35
  • [6] Generative Adversarial Networks for Medical Image Super-resolution
    Zhao, Min
    Naderian, Amirkhashayar
    Sanei, Saeid
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [7] Super-Resolution of Text Image Based on Conditional Generative Adversarial Network
    Wang, Yuyang
    Ding, Wenjun
    Su, Feng
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 270 - 281
  • [8] RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution
    Zhang, Wenlong
    Liu, Yihao
    Dong, Chao
    Qiao, Yu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3096 - 3105
  • [9] Generative adversarial networks for hyperspectral image spatial super-resolution
    Jiang Yilin
    Shao Ran
    Tang Sanqiang
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 2020, 27 (04) : 8 - 16
  • [10] Hierarchical Generative Adversarial Networks for Single Image Super-Resolution
    Chen, Weimin
    Ma, Yuqing
    Liu, Xianglong
    Yuan, Yi
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 355 - 364