Discrete Total Variation: New Definition and Minimization

被引:96
作者
Condat, Laurent [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, GIPSA Lab, F-38000 Grenoble, France
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2017年 / 10卷 / 03期
关键词
total variation; variational image processing; coarea formula; finite-difference schemes; MONOTONE INCLUSIONS; IMAGE-RESTORATION; REGULARIZATION; PROJECTION;
D O I
10.1137/16M1075247
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new definition for the gradient field of a discrete image defined on a twice finer grid. The differentiation process from an image to its gradient field is viewed as the inverse operation of linear integration, and the proposed mapping is nonlinear. Then, we define the total variation of an image as the Li norm of its gradient field amplitude. This new definition of the total variation yields sharp edges and has better isotropy than the classical definition.
引用
收藏
页码:1258 / 1290
页数:33
相关论文
共 41 条
  • [1] Abergel R., 2017, J MATH IMAG IN PRESS
  • [2] Fast Image Recovery Using Variable Splitting and Constrained Optimization
    Afonso, Manya V.
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) : 2345 - 2356
  • [3] Gradient Estimation Revitalized
    Alim, Usman R.
    Moeller, Torsten
    Condat, Laurent
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1495 - 1504
  • [4] Total variation regularization for image denoising, I. Geometric theory
    Allard, William K.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) : 1150 - 1190
  • [5] Linear demosaicing inspired by the human visual system
    Alleysson, D
    Süsstrunk, S
    Hérault, J
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (04) : 439 - 449
  • [6] Alter F, 2005, INTERFACE FREE BOUND, V7, P29
  • [7] A splitting algorithm for dual monotone inclusions involving cocoercive operators
    Bang Cong Vu
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (03) : 667 - 681
  • [8] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [9] Mimetic finite difference methods in image processing
    Bazan, C.
    Abouali, M.
    Castillo, J.
    Blomgren, P.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2011, 30 (03): : 701 - 720
  • [10] Bochev PB, 2006, IMA VOL MATH APPL, V142, P89