Autoencoders for unsupervised anomaly detection in high energy physics

被引:66
作者
Finke, Thorben [1 ]
Kraemer, Michael [1 ]
Morandini, Alessandro [1 ]
Mueck, Alexander [1 ]
Oleksiyuk, Ivan [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany
关键词
Jets; QCD Phenomenology;
D O I
10.1007/JHEP06(2021)161
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Autoencoders are widely used in machine learning applications, in particular for anomaly detection. Hence, they have been introduced in high energy physics as a promising tool for model-independent new physics searches. We scrutinize the usage of autoencoders for unsupervised anomaly detection based on reconstruction loss to show their capabilities, but also their limitations. As a particle physics benchmark scenario, we study the tagging of top jet images in a background of QCD jet images. Although we reproduce the positive results from the literature, we show that the standard autoencoder setup cannot be considered as a model-independent anomaly tagger by inverting the task: due to the sparsity and the specific structure of the jet images, the autoencoder fails to tag QCD jets if it is trained on top jets even in a semi-supervised setup. Since the same autoencoder architecture can be a good tagger for a specific example of an anomaly and a bad tagger for a different example, we suggest improved performance measures for the task of model-independent anomaly detection. We also improve the capability of the autoencoder to learn non-trivial features of the jet images, such that it is able to achieve both top jet tagging and the inverse task of QCD jet tagging with the same setup. However, we want to stress that a truly model-independent and powerful autoencoder-based unsupervised jet tagger still needs to be developed.
引用
收藏
页数:32
相关论文
共 64 条
  • [1] Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC
    Aad, G.
    Abajyan, T.
    Abbott, B.
    Abdallah, J.
    Khalek, S. Abdel
    Abdelalim, A. A.
    Abdinov, O.
    Aben, R.
    Abi, B.
    Abolins, M.
    AbouZeid, U. S.
    Abramowicz, H.
    Abreu, H.
    Acharya, B. S.
    Adamczyk, L.
    Adams, D. L.
    Addy, T. N.
    Adelman, J.
    Adomeit, S.
    Adragna, P.
    Adye, T.
    Aefsky, S.
    Aguilar-Saavedra, J. A.
    Agustoni, M.
    Aharrouche, M.
    Ahlen, S. P.
    Ahles, F.
    Ahmad, A.
    Ahsan, M.
    Aielli, G.
    Akdogan, T.
    Akesson, T. P. A.
    Akimoto, G.
    Akimov, A. V.
    Alam, M. S.
    Alam, M. A.
    Albert, J.
    Albrand, S.
    Aleksa, M.
    Aleksandrov, I. N.
    Alessandria, F.
    Alexa, C.
    Alexander, G.
    Alexandre, G.
    Alexopoulos, T.
    Alhroob, M.
    Aliev, M.
    Alimonti, G.
    Alison, J.
    Allbrooke, B. M. M.
    [J]. PHYSICS LETTERS B, 2012, 716 (01) : 1 - 29
  • [2] Abadi M., 2015, Large-Scale Machine Learning on Heterogeneous Systems
  • [3] Machine Learning in High Energy Physics Community White Paper
    Albertsson, Kim
    Altoe, Piero
    Anderson, Dustin
    Andrews, Michael
    Espinosa, Juan Pedro Araque
    Aurisano, Adam
    Basara, Laurent
    Bevan, Adrian
    Bhimji, Wahid
    Bonacorsi, Daniele
    Calafiura, Paolo
    Campanelli, Mario
    Capps, Louis
    Carminati, Federico
    Carrazza, Stefano
    Childers, Taylor
    Coniavitis, Elias
    Cranmer, Kyle
    David, Claire
    Davis, Douglas
    Duarte, Javier
    Erdmann, Martin
    Eschle, Jonas
    Farbin, Amir
    Feickert, Matthew
    Castro, Nuno Filipe
    Fitzpatrick, Conor
    Floris, Michele
    Forti, Alessandra
    Garra-Tico, Jordi
    Gemmler, Jochen
    Girone, Maria
    Glaysher, Paul
    Gleyzer, Sergei
    Gligorov, Vladimir
    Golling, Tobias
    Graw, Jonas
    Gray, Lindsey
    Greenwood, Dick
    Hacker, Thomas
    Harvey, John
    Hegner, Benedikt
    Heinrich, Lukas
    Hooberman, Ben
    Junggeburth, Johannes
    Kagan, Michael
    Kane, Meghan
    Kanishchev, Konstantin
    Karpinski, Przemyslaw
    Kassabov, Zahari
    [J]. 18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
  • [4] Alexander Susan., Susan Alexander, 24 Jun. 2017, Masiphumelele, Republic of South Africa
  • [5] Playing tag with ANN: boosted top identification with pattern recognition
    Almeida, Leandro G.
    Backovic, Mihailo
    Cliche, Mathieu
    Lee, Seung J.
    Perelstein, Maxim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07):
  • [6] Tag N' Train: a technique to train improved classifiers on unlabeled data
    Amram, Oz
    Suarez, Cristina Mantilla
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [7] [Anonymous], ARXIV181009136
  • [8] [Anonymous], ARXIV190302032
  • [9] Combine and conquer: event reconstruction with Bayesian Ensemble Neural Networks
    Araz, Jack Y.
    Spannowsky, Michael
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [10] NEURAL NETWORKS AND PRINCIPAL COMPONENT ANALYSIS - LEARNING FROM EXAMPLES WITHOUT LOCAL MINIMA
    BALDI, P
    HORNIK, K
    [J]. NEURAL NETWORKS, 1989, 2 (01) : 53 - 58