Exponential-Wrapped Distributions on SL(2, C) and the Mobius Group

被引:0
作者
Chevallier, Emmanuel [1 ]
机构
[1] Aix Marseille Univ, Inst Fresnel, Cent Marseille, CNRS, Marseille, France
来源
GEOMETRIC SCIENCE OF INFORMATION (GSI 2021) | 2021年 / 12829卷
关键词
Statistics on lie groups; Exponential map; Wrapped distributions; Killing form; POLARIZATION OPTICS; UNIFIED FORMALISM;
D O I
10.1007/978-3-030-80209-7_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we discuss the construction of probability distributions on the group SL(2, C) and the Mobius group using the exponential map. In particular, we describe the injectivity and surjectivity domains of the exponential map and provide its Jacobian determinant. We also show that on SL(2, C) and the Mobius group, there are no isotropic distributions in the group sense.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 8 条
[1]  
Brofos J.A, 2021, ICML WORKSH INV NEUR
[2]  
Falorsi L., 2019, PMLR, P3244
[3]  
Helgason S., 1978, DIFFERENTIAL GEOMETR
[4]  
Higham NJ, 2008, OTHER TITL APPL MATH, V104, P321
[5]  
Pennec X., 2020, Riemannian Geometric Statistics in Medical Image Analysis, P169
[6]   Matrix logarithms and range of the exponential maps for the symmetry groups SL(2, R), SL(2, C), and the Lorentz group [J].
Qiao, Zhiqian ;
Dick, Rainer .
JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (07)
[7]   UNIFIED FORMALISM FOR POLARIZATION OPTICS BY USING GROUP-THEORY II (GENERATOR REPRESENTATION) [J].
TAKENAKA, H .
JAPANESE JOURNAL OF APPLIED PHYSICS, 1973, 12 (11) :1729-1731
[8]   UNIFIED FORMALISM FOR POLARIZATION OPTICS BY USING GROUP-THEORY I (THEORY) [J].
TAKENAKA, H .
JAPANESE JOURNAL OF APPLIED PHYSICS, 1973, 12 (02) :226-231