Effects of dodecylamine and dodecanethiol on the conductive properties of nano-Ag films

被引:69
作者
Mo, Lixin [1 ]
Liu, Dongzhi [1 ]
Li, Wei [1 ]
Li, Luhai [2 ]
Wang, Lichang [3 ]
Zhou, Xueqin [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn, Tianjin 300072, Peoples R China
[2] Beijing Inst Graph Commun, Beijing Area Key Lab Printing & Packaging Mat & T, Beijing 102600, Peoples R China
[3] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
关键词
Silver nanoparticles; Conductive ink; Protective agents; Heat-treatment; SELF-ASSEMBLED MONOLAYERS; SILVER NANOPARTICLES; THERMAL-BEHAVIOR; TEMPERATURE; NANOCRYSTALS; FABRICATION; PARTICLES;
D O I
10.1016/j.apsusc.2011.01.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nano-Ag particles, with dodecylamine (DDA) and dodecanethiol (DDT) as the protective agent, were prepared and studied in order to investigate the effect of protective agent in the post heat-treatment of nano-Ag films. Results of electrical resistivity, micro-structural evolution and thermal analysis showed that the Ag-DDA films require a lower treatment temperature to convert into conductive materials compared to that of the Ag-DDT films. And the Ag-DDA films also have lower final electrical resistivity as well as more uniform and dense microstructure in comparison with the Ag-DDT films. Further study indicated that Ag-DDA films are thermodynamically unstable and the sinter of Ag-DDA particles could occur spontaneously even at room temperature. FT-IR, H-1 NMR and X-ray diffraction determinations revealed that both DDA and DDT molecules coordinate to the surface of nano-Ag particles through their head-groups. The bonding energy of Ag-S is higher than that of Ag-N and the alkyl chains ordering of chemisorbed DDT is also higher than that of chemisorbed DDA. It is implied that the post heat-treatment temperature and final resistivity of nano-Ag films are associated with the bonding energy and configuration of different capping molecules. Finally the conductive ink was prepared with well dispersed Ag-DDA nanoparticles and the ink-jet printed patterns on PI films show a sheet resistance of 166m Omega/square after heat-treating at 140 degrees C for 60 min. (C) 2011 Elsevier B. V. All rights reserved.
引用
收藏
页码:5746 / 5753
页数:8
相关论文
共 37 条
[1]   Dodecanethiol-protected copper/silver bimetallic nanoclusters and their surface properties [J].
Ang, TP ;
Chin, WS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (47) :22228-22236
[2]   Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters [J].
Ang, TP ;
Wee, TSA ;
Chin, WS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (30) :11001-11010
[3]   Self-assembled monolayers on gold nanoparticles [J].
Badia, A ;
Singh, S ;
Demers, L ;
Cuccia, L ;
Brown, GR ;
Lennox, RB .
CHEMISTRY-A EUROPEAN JOURNAL, 1996, 2 (03) :359-363
[4]   Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization [J].
Chen, Meng ;
Feng, Yong-Gang ;
Wang, Xia ;
Li, Ting-Cheng ;
Zhang, Jun-Yan ;
Qian, Dong-Jin .
LANGMUIR, 2007, 23 (10) :5296-5304
[5]   Fabrication and sintering eiiect on the morphologies and conductivity of nano-Ag particle films by the spin coating method [J].
Chou, KS ;
Huang, KC ;
Lee, HH .
NANOTECHNOLOGY, 2005, 16 (06) :779-784
[6]   Synthesis of nanosized silver particles by chemical reduction method [J].
Chou, KS ;
Ren, CY .
MATERIALS CHEMISTRY AND PHYSICS, 2000, 64 (03) :241-246
[7]  
Frisch M., 2004, GAUSSIAN 03 REVISION, DOI DOI 10.1016/J.MOLSTRUC.2017.03.014
[8]   Infrared spectroscopy of three-dimensional self-assembled monolayers: N-alkanethiolate monolayers on gold cluster compounds [J].
Hostetler, MJ ;
Stokes, JJ ;
Murray, RW .
LANGMUIR, 1996, 12 (15) :3604-3612
[9]   Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics [J].
Huang, D ;
Liao, F ;
Molesa, S ;
Redinger, D ;
Subramanian, V .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (07) :G412-G417
[10]   Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity [J].
Im, SH ;
Lee, YT ;
Wiley, B ;
Xia, YN .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (14) :2154-2157