Some subclasses of meromorphically multivalent functions associated with a linear operator

被引:50
作者
Srivastava, H. M. [1 ]
Yang, Ding-Gong [2 ]
Xu, N-Eng [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[3] Changshu Inst Technol, Dept Math, Jiangsu 215500, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
meromorphic functions; multivalent functions; linear operator; hadamard product (or convolution); convex univalent functions; subordination between analytic functions; integral operator;
D O I
10.1016/j.amc.2007.04.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Sigma(p) denote the class of functions normalized by f(z) = z(-p) + (infinity)Sigma(n=1) a(n)z(n-p) (p is an element of N := {1,2,3,...}), which are analytic and p-valent in 0 < vertical bar z vertical bar < 1. Making use of a linear operator, which is defined here by means of the Hadamard product (or convolution), we introduce some new subclasses of the meromorphically p-valent function class Sigma(p) and investigate their inclusion relationships and convolution properties. Some integral-preserving properties are also considered. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 23
页数:13
相关论文
共 8 条