Quantitative analysis of the defects in CVD grown graphene by plasmon-enhanced Raman scattering

被引:19
作者
Liu, Yansheng [1 ,2 ]
Feng, Huayu [3 ,4 ]
Luo, Feng [1 ]
机构
[1] IMDEA Nanosci, Faraday 9,Ciudad Univ Cantoblanco, Madrid 28049, Spain
[2] Univ Autonoma Madrid, Sch Sci, Ciudad Univ Cantoblanco, E-28049 Madrid, Spain
[3] Shandong Univ, Ctr Nanoelect, Jinan 250100, Peoples R China
[4] Shandong Univ, Sch Microelect, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
MONOLAYER GRAPHENE; HIGH-QUALITY; SPECTROSCOPY; GOLD; HYBRID; ARRAYS; CARBON; FILMS; GRAPHITE; SURFACES;
D O I
10.1016/j.carbon.2020.01.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a study of quantitative analysis of the defects in chemical vapor deposition (CVD) grown graphene through plasmon-enhanced Raman scattering has been performed. By designing and fabricating three-dimensional hybrid Au nano-particles/single-layer-graphene/Au nano-holes (Au NPs/SLG/ Au NHs) structures, the defects induced Raman scattering signals of SLG have been extremely enhanced. The light-graphene interaction between graphene and plasmonic nanostructures heightened the crosssection of the Raman scattering resulting in enhancing Raman signals. In the SERS spectra of graphene, the D band and D' band which associated with defects-induced double resonance (DR) Raman scattering processes have been clearly observed. A general and empirical formula has been applied to quantify graphene defects nano-crystallite (La) through the relation between the ratio of I-D/I-G and E-L(4). Additionally, an empirical formula for quantifying the defects based on the relation between I-D/I-G and E-L(4) was proposed. Besides, the Au NPs/SLG/Au NHs as a SERS substrate has been applied in detecting the fluorescein molecular under low concentration, and it exhibited good SERS performance. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 86 条
[1]  
Bamrungsap S., 2018, AVICENNA J MED BIOTE, V28
[2]   One-parameter scaling at the dirac point in graphene [J].
Bardarson, J. H. ;
Tworzydlo, J. ;
Brouwer, P. W. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (10)
[3]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[4]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[5]   Production and processing of graphene and 2d crystals [J].
Bonaccorso, Francesco ;
Lombardo, Antonio ;
Hasan, Tawfique ;
Sun, Zhipei ;
Colombo, Luigi ;
Ferrari, Andrea C. .
MATERIALS TODAY, 2012, 15 (12) :564-589
[6]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[7]   Surface-enhanced Raman scattering [J].
Campion, A ;
Kambhampati, P .
CHEMICAL SOCIETY REVIEWS, 1998, 27 (04) :241-250
[8]   Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size [J].
Cancado, L. G. ;
Jorio, A. ;
Pimenta, M. A. .
PHYSICAL REVIEW B, 2007, 76 (06)
[9]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[10]   Mechanism of Near-Field Raman Enhancement in One-Dimensional Systems [J].
Cancado, L. G. ;
Jorio, A. ;
Ismach, A. ;
Joselevich, E. ;
Hartschuh, A. ;
Novotny, L. .
PHYSICAL REVIEW LETTERS, 2009, 103 (18)