Aurora image segmentation by combining patch and texture thresholding

被引:21
作者
Gao, Xinbo [2 ]
Fu, Rong [2 ]
Li, Xuelong [1 ]
Tao, Dacheng [3 ]
Zhang, Beichen [4 ]
Yang, Huigen [4 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Elect Engn, Xian 710071, Shaanxi, Peoples R China
[3] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[4] Polar Res Inst China, SOA Key Lab Polar Sci, Shanghai 200136, Peoples R China
基金
中国国家自然科学基金;
关键词
Image segmentation; Feature extraction; LBP; Aurora; Texture segmentation; Otsu; Patch segmentation; ROTATION-INVARIANT; ACTIVE CONTOURS; SCALE;
D O I
10.1016/j.cviu.2010.11.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The proportion of aurora to the field-of-view in temporal series of all-sky images is an important index to investigate the evolvement of aurora. To obtain such an index, a crucial phase is to segment the aurora from the background of sky. A new aurora segmentation approach, including a feature extraction method and the segmentation algorithm, is presented in this paper. The proposed feature extraction method, called adaptive local binary patterns (ALBP), selects the frequently occurred patterns to construct the main pattern set, which avoids using the same pattern set to describe different texture structures in traditional local binary patterns. According to the different morphologies and different semantics of aurora, the segmentation algorithm is designed into two parts, texture part segmentation based on ALBP features and patch part segmentation based on modified Otsu method. As it is simple and efficient, our implementation is suitable for large-scale datasets. The experiments exhibited the segmentation effect of the proposed method is satisfactory from human visual aspect and segmentation accuracy. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:390 / 402
页数:13
相关论文
共 50 条
[41]   IMAGE SEGMENTATION USING BI-LEVEL THRESHOLDING [J].
Sheeba, A. ;
Manikandan, S. .
2014 INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), 2014,
[42]   A pipelined architecture for image segmentation by adaptive progressive thresholding [J].
Asari, KV ;
Srikanthan, T ;
Kumar, S ;
Radhakrishnan, D .
MICROPROCESSORS AND MICROSYSTEMS, 1999, 23 (8-9) :493-499
[43]   Multilevel Thresholding Image Segmentation Using Memetic Algorithm [J].
Banimelhem, Omar ;
Mowafi, Moad ;
Alzoubi, Oduy .
2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2015, :119-123
[44]   Swarm selection method for multilevel thresholding image segmentation [J].
Abd Elaziz, Mohamed ;
Bhattacharyya, Siddhartha ;
Lu, Songfeng .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 138
[45]   Fast Image Segmentation Based on Adaptive Histogram Thresholding [J].
Mirkazemi, Abolfazl ;
Alavi, S. Enayatolah ;
Akbarizadeh, Gholamreza .
2015 INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2015, :165-169
[46]   Double Thresholding with Sine Entropy for Thermal Image Segmentation [J].
Manda, Manikanta Prahlad ;
Hyun, Daijoon .
TRAITEMENT DU SIGNAL, 2021, 38 (06) :1713-1718
[47]   Thresholding based image segmentation aided by Kleene Algebra [J].
Ishikawa, M ;
Kamiura, N ;
Hata, Y .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1999, E82D (05) :962-967
[48]   Tongue image segmentation via color decomposition and thresholding [J].
Li, Zuoyong ;
Yu, Zhaochai ;
Liu, Weixia ;
Xu, Yong ;
Zhang, Daoqiang ;
Cheng, Yong .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2019, 31 (23)
[49]   Shannon and Fuzzy entropy based evolutionary image thresholding for image segmentation [J].
Naidu, M. S. R. ;
Kumar, P. Rajesh ;
Chiranjeevi, K. .
ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) :1643-1655
[50]   Performance analysis of entropy thresholding for successful image segmentation [J].
Yazid, Haniza ;
Basah, Shafriza Nisha ;
Rahim, Saufiah Abdul ;
Safar, Muhammad Juhairi Aziz ;
Basaruddin, Khairul Salleh .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) :6433-6450