On the classification of gradient Ricci solitons

被引:139
作者
Petersen, Peter [1 ]
Wylie, William
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
CURVATURE; MANIFOLDS; RIGIDITY;
D O I
10.2140/gt.2010.14.2277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the only shrinking gradient solitons with vanishing Weyl tensor and Ricci tensor satisfying a weak integral condition are quotients of the standard ones S-n, Sn-1 x R and R-n. This gives a new proof of the Hamilton-Ivey-Perelman classification of 3-dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of H-n, Hn-1 x R, R-n, Sn-1 x R or S-n
引用
收藏
页码:2277 / 2300
页数:24
相关论文
共 50 条
[41]   Half conformally flat gradient Ricci almost solitons [J].
Brozos-Vazquez, M. ;
Garcia-Rio, E. ;
Valle-Regueiro, X. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2189)
[42]   Asymptotic estimates and compactness of expanding gradient Ricci solitons [J].
Deruelle, Alix .
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2017, 17 (02) :485-530
[43]   On Gradient Shrinking and Expanding Kahler-Ricci Solitons [J].
Zhang, Liangdi .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
[44]   A GAP THEOREM ON COMPLETE SHRINKING GRADIENT RICCI SOLITONS [J].
Zhang, Shijin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (01) :359-368
[45]   Four-dimensional gradient Ricci solitons with (half) nonnegative isotropic curvature [J].
Cao, Huai-Dong ;
Xie, Junming .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2025, 197
[46]   A Gradient Bound for the Allen-Cahn Equation Under Almost Ricci Solitons [J].
Hajiaghasi, Sakineh ;
Azami, Shahroud .
SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (01) :83-98
[47]   ε-REGULARITY FOR SHRINKING RICCI SOLITONS AND RICCI FLOWS [J].
Ge, Huabin ;
Jiang, Wenshuai .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (05) :1231-1256
[48]   A note on the triviality of gradient solitons of the Ricci-Bourguignon flow [J].
Cunha, Antonio W. ;
Silva, Antonio N., Jr. ;
De Lima, Eudes L. ;
De Lima, Henrique F. .
ARCHIV DER MATHEMATIK, 2023, 120 (01) :89-98
[49]   Gradient almost Ricci solitons on multiply warped product manifolds [J].
Gunsen, S. ;
Onat, L. .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2021, 13 (02) :386-394
[50]   Compact almost Ricci solitons with constant scalar curvature are gradient [J].
Barros, A. ;
Batista, R. ;
Ribeiro, E., Jr. .
MONATSHEFTE FUR MATHEMATIK, 2014, 174 (01) :29-39