On the classification of gradient Ricci solitons

被引:139
作者
Petersen, Peter [1 ]
Wylie, William
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
CURVATURE; MANIFOLDS; RIGIDITY;
D O I
10.2140/gt.2010.14.2277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the only shrinking gradient solitons with vanishing Weyl tensor and Ricci tensor satisfying a weak integral condition are quotients of the standard ones S-n, Sn-1 x R and R-n. This gives a new proof of the Hamilton-Ivey-Perelman classification of 3-dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of H-n, Hn-1 x R, R-n, Sn-1 x R or S-n
引用
收藏
页码:2277 / 2300
页数:24
相关论文
共 50 条
[31]   Gradient Ricci-Bourguignon solitons and applications [J].
Chaudhary, Ram Shankar ;
Pal, Buddhadev .
AFRIKA MATEMATIKA, 2025, 36 (01)
[32]   On the asymptotic behavior of expanding gradient Ricci solitons [J].
Chen, Chih-Wei .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 42 (02) :267-277
[33]   On Gradient Solitons of the Ricci-Harmonic Flow [J].
Guo, Hong Xin ;
Philipowski, Robert ;
Thalmaier, Anton .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (11) :1798-1804
[34]   RIGIDITY OF GRADIENT SHRINKING AND EXPANDING RICCI SOLITONS [J].
Yang, Fei ;
Zhang, Liangdi .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) :817-824
[35]   Gradient Ricci solitons on Kropina measure spaces [J].
Xia, Qiaoling ;
Zhu, Junyi .
JOURNAL OF GEOMETRY AND PHYSICS, 2024, 195
[36]   Uniqueness of asymptotic cones of complete noncompact shrinking gradient Ricci solitons with Ricci curvature decay [J].
Chow, Bennett ;
Lu, Peng .
COMPTES RENDUS MATHEMATIQUE, 2015, 353 (11) :1007-1009
[37]   On four-dimensional steady gradient Ricci solitons that dimension reduce [J].
Chow, Bennett ;
Deng, Yuxing ;
Ma, Zilu .
ADVANCES IN MATHEMATICS, 2022, 403
[38]   Some Results on Conformal Geometry of Gradient Ricci Solitons [J].
Silva Filho, J. F. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (04) :937-955
[39]   The nonexistence of gradient almost Ricci solitons warped product [J].
Tokura, Willian ;
Adriano, Levi ;
Pina, Romildo ;
Barboza, Marcelo .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 82
[40]   On Gradient Shrinking and Expanding Kähler–Ricci Solitons [J].
Liangdi Zhang .
Mediterranean Journal of Mathematics, 2022, 19