On the classification of gradient Ricci solitons

被引:135
|
作者
Petersen, Peter [1 ]
Wylie, William
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
CURVATURE; MANIFOLDS; RIGIDITY;
D O I
10.2140/gt.2010.14.2277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the only shrinking gradient solitons with vanishing Weyl tensor and Ricci tensor satisfying a weak integral condition are quotients of the standard ones S-n, Sn-1 x R and R-n. This gives a new proof of the Hamilton-Ivey-Perelman classification of 3-dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of H-n, Hn-1 x R, R-n, Sn-1 x R or S-n
引用
收藏
页码:2277 / 2300
页数:24
相关论文
共 50 条
  • [31] ON A CLASS OF FINSLER GRADIENT RICCI SOLITONS
    Mo, Xiaohuan
    Zhu, Hongmei
    Zhu, Ling
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1763 - 1773
  • [32] On gradient solitons of the Ricci–Harmonic flow
    Hong Xin Guo
    Robert Philipowski
    Anton Thalmaier
    Acta Mathematica Sinica, English Series, 2015, 31 : 1798 - 1804
  • [33] The Weyl tensor of gradient Ricci solitons
    Cao, Xiaodong
    Tran, Hung
    GEOMETRY & TOPOLOGY, 2016, 20 (01) : 389 - 436
  • [34] On Gradient Solitons of the Ricci–Harmonic Flow
    Hong Xin GUO
    Robert PHILIPOWSKI
    Anton THALMAIER
    Acta Mathematica Sinica, 2015, 31 (11) : 1798 - 1804
  • [35] RIGIDITY OF GRADIENT ALMOST RICCI SOLITONS
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (04) : 1267 - 1279
  • [36] On Gradient Solitons of the Ricci–Harmonic Flow
    Hong Xin GUO
    Robert PHILIPOWSKI
    Anton THALMAIER
    Acta Mathematica Sinica,English Series, 2015, (11) : 1798 - 1804
  • [37] Maximum principles and gradient Ricci solitons
    Fernandez-Lopez, Manuel
    Garcia-Rio, Eduardo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) : 73 - 81
  • [38] RIGIDITY OF GRADIENT SHRINKING RICCI SOLITONS
    Yang, Fei
    Zhang, Liangdi
    ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (04) : 533 - 547
  • [39] On warped Finslerian gradient Ricci solitons
    Yazdi, Masumeh Khameforoush
    Fakhri, Yousef Alipour
    Rezaii, Morteza Mirmohammad
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (3-4): : 309 - 319
  • [40] Basic properties of gradient Ricci solitons
    Chu, SC
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 79 - 102