On the classification of gradient Ricci solitons

被引:139
作者
Petersen, Peter [1 ]
Wylie, William
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
CURVATURE; MANIFOLDS; RIGIDITY;
D O I
10.2140/gt.2010.14.2277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the only shrinking gradient solitons with vanishing Weyl tensor and Ricci tensor satisfying a weak integral condition are quotients of the standard ones S-n, Sn-1 x R and R-n. This gives a new proof of the Hamilton-Ivey-Perelman classification of 3-dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of H-n, Hn-1 x R, R-n, Sn-1 x R or S-n
引用
收藏
页码:2277 / 2300
页数:24
相关论文
共 50 条
[21]   ON SHRINKING GRADIENT RICCI SOLITONS WITH NONNEGATIVE SECTIONAL CURVATURE [J].
Cai, Mingliang .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 277 (01) :61-76
[22]   RIGIDITY OF GRADIENT SHRINKING RICCI SOLITONS [J].
Yang, Fei ;
Zhang, Liangdi .
ASIAN JOURNAL OF MATHEMATICS, 2020, 24 (04) :533-547
[23]   Statistical Structures with Ricci and Hessian Metrics and Gradient Solitons [J].
Blaga, Adara M. ;
Vilcu, Gabriel-Eduard .
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01) :6-14
[24]   Classification results for expanding and shrinking gradient Kähler-Ricci solitons [J].
Conlon, Ronan J. ;
Deruelle, Alix ;
Sun, Song .
GEOMETRY & TOPOLOGY, 2024, 28 (01) :267-351
[25]   On a Class of Gradient Almost Ricci Solitons [J].
Guler, Sinem .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) :3635-3650
[26]   Stability of non compact steady and expanding gradient Ricci solitons [J].
Deruelle, Alix .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) :2367-2405
[27]   ON THE GLOBAL STRUCTURE OF CONFORMAL GRADIENT SOLITONS WITH NONNEGATIVE RICCI TENSOR [J].
Catino, Giovanni ;
Mantegazza, Carlo ;
Mazzieri, Lorenzo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (06)
[28]   Classification of Warped Product Submanifolds in Kenmotsu Space Forms Admitting Gradient Ricci Solitons [J].
Alkhaldi, Ali H. ;
Ali, Akram .
MATHEMATICS, 2019, 7 (02)
[29]   On Gradient Shrinking Ricci Solitons with Radial Conditions [J].
Fei Yang ;
Liangdi Zhang ;
Haiyan Ma .
Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 :2161-2174
[30]   On Gradient Shrinking Ricci Solitons with Radial Conditions [J].
Yang, Fei ;
Zhang, Liangdi ;
Ma, Haiyan .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) :2161-2174