On the classification of gradient Ricci solitons

被引:139
作者
Petersen, Peter [1 ]
Wylie, William
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
CURVATURE; MANIFOLDS; RIGIDITY;
D O I
10.2140/gt.2010.14.2277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the only shrinking gradient solitons with vanishing Weyl tensor and Ricci tensor satisfying a weak integral condition are quotients of the standard ones S-n, Sn-1 x R and R-n. This gives a new proof of the Hamilton-Ivey-Perelman classification of 3-dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of H-n, Hn-1 x R, R-n, Sn-1 x R or S-n
引用
收藏
页码:2277 / 2300
页数:24
相关论文
共 39 条
[1]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[2]  
[Anonymous], ARXIVMATHDG0303109
[3]  
[Anonymous], 2006, Grad. Stud. Math
[4]   Three-dimensional Ricci solitons which project to surfaces [J].
Baird, Paul ;
Danielo, Laurent .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :65-91
[5]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[6]  
Böhm C, 2008, ANN MATH, V167, P1079
[7]   Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature [J].
Bohm, Christoph ;
Wilking, Burkhard .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (03) :665-681
[8]   Einstein spaces which are mapped conformally on each other [J].
Brinkmann, HW .
MATHEMATISCHE ANNALEN, 1925, 94 :119-145
[10]  
CAO X, ARXIV08070588V3