On the classification of gradient Ricci solitons

被引:135
|
作者
Petersen, Peter [1 ]
Wylie, William
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
CURVATURE; MANIFOLDS; RIGIDITY;
D O I
10.2140/gt.2010.14.2277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the only shrinking gradient solitons with vanishing Weyl tensor and Ricci tensor satisfying a weak integral condition are quotients of the standard ones S-n, Sn-1 x R and R-n. This gives a new proof of the Hamilton-Ivey-Perelman classification of 3-dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of H-n, Hn-1 x R, R-n, Sn-1 x R or S-n
引用
收藏
页码:2277 / 2300
页数:24
相关论文
共 50 条