Improvement of conductivity of graphene-silver nanowire hybrid through nitrogen doping using low power plasma treatment

被引:20
作者
Thilawala, Kondasinghe Gayantha Nishan [1 ]
Kim, Jae-Kwan [1 ]
Lee, Ji-Myon [1 ]
机构
[1] Sunchon Natl Univ, Dept Printed Elect Engn, Sunchon 57922, Jeonnam, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene; Metal nanowires; Electronic properties; Nitrogen doping; Plasma; CARBON NANOTUBES; HIGH-PERFORMANCE; DOPED GRAPHENE; TRANSPARENT; FILMS; COMPOSITES; NETWORK; ELECTRODE; GRAPHITE;
D O I
10.1016/j.jallcom.2018.09.272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene-silver nanowire (AgNW) hybrid structure is a potential candidate to replace indium tin oxide (ITO) owing to its high conductivity, transparency, and flexibility. The thin insulating poly-vinylpyrrolidone (PVP) residual surfactant coating that forms on AgNW weakens the wire-to-wire and wire-to-graphene contact, resulting in a higher sheet resistance. For this reason, a post-processing treatment such as high-temperature annealing is usually carried out to reduce the sheet resistance. In this paper, low power nitrogen plasma is utilized to increase the electrical conductivity of the hybrid through the partial removal of PVP and simultaneous doping of graphene without employing any high-temperature annealing treatment. A reduction of over 34% in sheet resistance is obtained for the hybrid compared with a 17% reduction for the AgNW electrode alone. The hybrid electrode, in comparison to the AgNW electrode alone, results in an electrical to optical conductivity ratio (sigma(DC)/sigma(OP)) of 234 in 45 s without losing its transparency. In comparison to the 4% reduction of sheet resistance caused by high temperature annealing at 180 degrees C for 30 min, nitrogen plasma treatment results in a substantially higher reduction (>34%) of the sheet resistance of hybrids in a substantially shorter processing time (45 s). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1009 / 1017
页数:9
相关论文
共 69 条
[11]   Scaling Properties of Charge Transport in Polycrystalline Graphene [J].
Dinh Van tuan ;
Kotakoski, Jani ;
Louvet, Thibaud ;
Ortmann, Frank ;
Meyer, Jannik C. ;
Roche, Stephan .
NANO LETTERS, 2013, 13 (04) :1730-1735
[12]   Universality of non-Ohmic shunt leakage in thin-film solar cells [J].
Dongaonkar, S. ;
Servaites, J. D. ;
Ford, G. M. ;
Loser, S. ;
Moore, J. ;
Gelfand, R. M. ;
Mohseni, H. ;
Hillhouse, H. W. ;
Agrawal, R. ;
Ratner, M. A. ;
Marks, T. J. ;
Lundstrom, M. S. ;
Alam, M. A. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
[13]   Defect characterization in graphene and carbon nanotubes using Raman spectroscopy [J].
Dresselhaus, M. S. ;
Jorio, A. ;
Souza Filho, A. G. ;
Saito, R. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1932) :5355-5377
[14]   Probing the Nature of Defects in Graphene by Raman Spectroscopy [J].
Eckmann, Axel ;
Felten, Alexandre ;
Mishchenko, Artem ;
Britnell, Liam ;
Krupke, Ralph ;
Novoselov, Kostya S. ;
Casiraghi, Cinzia .
NANO LETTERS, 2012, 12 (08) :3925-3930
[15]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[16]   Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires [J].
Gao, Y ;
Jiang, P ;
Liu, DF ;
Yuan, HJ ;
Yan, XQ ;
Zhou, ZP ;
Wang, JX ;
Song, L ;
Liu, LF ;
Zhou, WY ;
Wang, G ;
Wang, CY ;
Xie, SS ;
Zhang, JM ;
Shen, AY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (34) :12877-12881
[17]   A universal transfer route for graphene [J].
Gorantla, Sandeep ;
Bachmatiuk, Alicja ;
Hwang, Jeonghyun ;
Alsalman, Hussain A. ;
Kwak, Joon Young ;
Seyller, Thomas ;
Eckert, Juergen ;
Spencer, Michael G. ;
Ruemmeli, Mark H. .
NANOSCALE, 2014, 6 (02) :889-896
[18]   Solar cell efficiency tables (version 42) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (05) :827-837
[19]   Ultralow dielectric, fluoride-containing cyanate ester resins with improved mechanical properties and high thermal and dimensional stabilities [J].
Gu, Junwei ;
Dong, Wencai ;
Tang, Yusheng ;
Guo, Yongqiang ;
Tang, Lin ;
Kong, Jie ;
Tadakamalla, Sruthi ;
Wang, Bin ;
Guo, Zhanhu .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (28) :6929-6936
[20]   Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility [J].
Guan, Xiaoyang ;
Zheng, Guoqiang ;
Dai, Kun ;
Liu, Chuntai ;
Yan, Xingru ;
Shen, Changyu ;
Guo, Zhanhu .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) :14150-14159