DEEP SPARSE DICTIONARY-BASED REPRESENTATION FOR 3D NON-RIGID SHAPE RETRIEVAL

被引:3
作者
Mohamed, Hela Haj [1 ]
Belaid, Samir [1 ]
Naanaa, Wady [2 ]
Ben Romdhane, Lotfi [1 ]
机构
[1] Univ Sousse, MARS Res Lab, Sousse, Tunisia
[2] Univ Tunis El Manar Tunisia, Tunis, Tunisia
来源
36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021 | 2021年
关键词
Non-rigid 3D shape retrieval; Deep sparse descriptor; Sparse coding; dictionary leaning; deep learning; VARIABLE SELECTION; DESCRIPTORS; ALGORITHM; FEATURES; OBJECT;
D O I
10.1145/3412841.3441984
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address the problem of non-rigid 3D shape retrieval. The proposed method extract high-level features that are invariant to non-rigid shape deformations by integrating deep dictionary learning and a sparse coding approach. A stacked sparse coding network is constructed to achieve a multiple layers dictionary learning instead of a single level dictionary learning. Then, for a given 3D query, a 3D shape descriptor is calculated, providing a multi-scale shape representations. This descriptor is, therefore, used to access deep learned dictionary. The proposed method is validated on two benchmarks, namely Shrec'11 and Shrec'15, for 3D non-rigid object retrieval and compared with existing deep learning-based approaches.
引用
收藏
页码:1070 / 1077
页数:8
相关论文
共 37 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2007, PROC 5 EUROGRAPH S G, DOI 10.1145/1281991.1282022
[3]  
[Anonymous], 2011, PROC EUROGRAPHICS 20, P79, DOI DOI 10.2312/3DOR/3DOR11/079-088
[4]  
Aubry M, 2011, IEEE I CONF COMP VIS, P1411, DOI 10.1109/ICCV.2011.6126396
[5]  
Baldi P, 2012, JMLR WORKSHOP C P
[6]  
Bengio Y., 2006, P ADV NEUR INF PROC, V19, P153, DOI [DOI 10.7551/MITPRESS/7503.003.0024, DOI 10.5555/2976456.2976476]
[7]   Shape Google: Geometric Words and Expressions for Invariant Shape Retrieval [J].
Bronstein, Alexander M. ;
Bronstein, Michael M. ;
Guibas, Leonidas J. ;
Ovsjanikov, Maks .
ACM TRANSACTIONS ON GRAPHICS, 2011, 30 (01)
[8]   Scale-invariant heat kernel signatures for non-rigid shape recognition [J].
Bronstein, Michael M. ;
Kokkinos, Iasonas .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :1704-1711
[9]   Learning High-Level Feature by Deep Belief Networks for 3-D Model Retrieval and Recognition [J].
Bu, Shuhui ;
Liu, Zhenbao ;
Han, Junwei ;
Wu, Jun ;
Ji, Rongrong .
IEEE TRANSACTIONS ON MULTIMEDIA, 2014, 16 (08) :2154-2167
[10]   Scale-Invariant Features for 3-D Mesh Models [J].
Darom, Tal ;
Keller, Yosi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (05) :2758-2769