Functional envelope of a dynamical system

被引:19
作者
Auslander, Joseph [1 ]
Kolyada, Sergii
Snoha, L'ubomir
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] NASU, Inst Math, UA-01601 Kiev, Ukraine
[3] Matej Bel Univ, Fac Nat Sci, Dept Math, Banska Bystrica 97401, Slovakia
关键词
D O I
10.1088/0951-7715/20/9/012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If (X, f) is a dynamical system given by a compact metric space X and a continuous map f : X -> X then by the functional envelope of (X, f) we mean the dynamical system (S(X), F-f) whose phase space S(X) is the space of all continuous selfmaps of X and the map F-f : S(X) -> S(X) is defined by F-f (phi) = f circle phi for any phi epsilon S(X). The functional envelope of a system always contains a copy of the original system. Our motivation for the study of dynamics in functional envelopes comes from semigroup theory, from the theory of functional difference equations and from dynamical systems theory. The paper mainly deals with the connection between the properties of a system and the properties of its functional envelope. Special attention is paid to orbit closures, omega-limit sets, (non) existence of dense orbits and topological entropy.
引用
收藏
页码:2245 / 2269
页数:25
相关论文
共 25 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
Akin E, 1996, OHIO ST U M, V5, P25
[3]  
Auslander J., 1988, N HOLLAND MATH STUDI, V153
[4]   TOPOLOGICAL DYNAMICS OF TRANSFORMATIONS INDUCED ON SPACE OF PROBABILITY MEASURES [J].
BAUER, W ;
SIGMUND, K .
MONATSHEFTE FUR MATHEMATIK, 1975, 79 (02) :81-92
[5]  
Ellis R., 1959, Proc. Amer. Math. Soc, V10, P637, DOI [10.1090/S0002-9939-1959-0107225-X, DOI 10.1090/S0002-9939-1959-0107225-X]
[6]  
Ellis R., 1969, LECT TOPOLOGICAL DYN
[7]   QUASI-FACTORS OF ZERO ENTROPY SYSTEMS [J].
GLASNER, E ;
WEISS, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (03) :665-686
[8]   Quasifactors of ergodic systems with positive entropy [J].
Glasner, E ;
Weiss, B .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 134 (1) :363-380
[9]  
Glasner E., 2000, TOPOL METHOD NONL AN, V16, P351, DOI [10.12775/TMNA.2000.045, DOI 10.12775/TMNA.2000.045]
[10]  
Glasner E., 2006, Colloq. Math, V105, P283, DOI [10.4064/cm105-2-9, DOI 10.4064/CM105-2-9]