Synthetic Biology Applied to Carbon Conservative and Carbon Dioxide Recycling Pathways

被引:32
作者
Francois, Jean Marie [1 ,2 ]
Lachaux, Clea [2 ]
Morin, Nicolas [1 ,2 ]
机构
[1] Univ Toulouse, INSA, INRA, TBI,CNRS, Toulouse, France
[2] Toulouse White Biotechnol Ctr TWB, Ramonville St Agne, France
关键词
microbial physiology; metabolic engineering; synthetic biology; carbon dioxide; bio-based products; chemicals; BIO-BASED CHEMICALS; ESCHERICHIA-COLI; GLYOXYLATE SHUNT; ACTINOBACILLUS-SUCCINOGENES; FRUCTOSE 1,6-BISPHOSPHATASE; SACCHAROMYCES-CEREVISIAE; GENE-EXPRESSION; CO2; FIXATION; CITRIC-ACID; METABOLISM;
D O I
10.3389/fbioe.2019.00446
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The global warming conjugated with our reliance to petrol derived processes and products have raised strong concern about the future of our planet, asking urgently to find sustainable substitute solutions to decrease this reliance and annihilate this climate change mainly due to excess of CO2 emission. In this regard, the exploitation of microorganisms as microbial cell factories able to convert non-edible but renewable carbon sources into biofuels and commodity chemicals appears as an attractive solution. However, there is still a long way to go to make this solution economically viable and to introduce the use of microorganisms as one of the motor of the forthcoming bio-based economy. In this review, we address a scientific issue that must be challenged in order to improve the value of microbial organisms as cell factories. This issue is related to the capability of microbial systems to optimize carbon conservation during their metabolic processes. This initiative, which can be addressed nowadays using the advances in Synthetic Biology, should lead to an increase in products yield per carbon assimilated which is a key performance indice in biotechnological processes, as well as to indirectly contribute to a reduction of CO2 emission.
引用
收藏
页数:16
相关论文
共 86 条
[1]   Citric Acid Cycle and Role of its Intermediates in Metabolism [J].
Akram, Muhammad .
CELL BIOCHEMISTRY AND BIOPHYSICS, 2014, 68 (03) :475-478
[2]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[3]   The two isoenzymes for yeast NAD(+)-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation [J].
Ansell, R ;
Granath, K ;
Hohmann, S ;
Thevelein, JM ;
Adler, L .
EMBO JOURNAL, 1997, 16 (09) :2179-2187
[4]   Sugar Synthesis from CO2 in Escherichia coli [J].
Antonovsky, Niv ;
Gleizer, Shmuel ;
Noor, Elad ;
Zohar, Yehudit ;
Herz, Elad ;
Barenholz, Uri ;
Zelcbuch, Lior ;
Amram, Shira ;
Wides, Aryeh ;
Tepper, Naama ;
Davidi, Dan ;
Bar-On, Yinon ;
Bareia, Tasneem ;
Wernick, David G. ;
Shani, Ido ;
Malitsky, Sergey ;
Jona, Ghil ;
Bar-Even, Arren ;
Milo, Ron .
CELL, 2016, 166 (01) :115-125
[5]   Design and analysis of synthetic carbon fixation pathways [J].
Bar-Even, Arren ;
Noor, Elad ;
Lewis, Nathan E. ;
Milo, Ron .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (19) :8889-8894
[6]   A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea [J].
Berg, Ivan A. ;
Kockelkorn, Daniel ;
Buckel, Wolfgang ;
Fuchs, Georg .
SCIENCE, 2007, 318 (5857) :1782-1786
[7]   Autotrophic carbon fixation in archaea [J].
Berg, Ivan A. ;
Kockelkorn, Daniel ;
Ramos-Vera, W. Hugo ;
Say, Rafael F. ;
Zarzycki, Jan ;
Huegler, Michael ;
Alber, Birgit E. ;
Fuchs, Georg .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (06) :447-460
[8]   Building carbon-carbon bonds using a biocatalytic methanol condensation cycle [J].
Bogorad, Igor W. ;
Chen, Chang-Ting ;
Theisen, Matthew K. ;
Wu, Tung-Yun ;
Schlenz, Alicia R. ;
Lam, Albert T. ;
Liao, James C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (45) :15928-15933
[9]   Synthetic non-oxidative glycolysis enables complete carbon conservation [J].
Bogorad, Igor W. ;
Lin, Tzu-Shyang ;
Liao, James C. .
NATURE, 2013, 502 (7473) :693-+
[10]   A Synthetic Alternative to Canonical One-Carbon Metabolism [J].
Bouzon, Madeleine ;
Perret, Alain ;
Loreau, Olivier ;
Delmas, Valerie ;
Perchat, Nadia ;
Weissenbach, Jean ;
Taran, Frederic ;
Marliere, Philippe .
ACS SYNTHETIC BIOLOGY, 2017, 6 (08) :1520-1533