Counting substructures I: Color critical graphs

被引:20
作者
Mubayi, Dhruv [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
Extremal graph theory; Stability; Removal lemma;
D O I
10.1016/j.aim.2010.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a graph which contains an edge whose deletion reduces its chromatic number. We prove tight bounds on the number of copies of F in a graph with a prescribed number of vertices and edges. Our results extend those of Simonovits (1968) [8], who proved that there is one copy of F, and of Rademacher, Erdos (1962) [1,2] and Lovasz and Simonovits (1983) [4], who proved similar counting results when F is a complete graph. One of the simplest cases of our theorem is the following new result. There is an absolute positive constant c such that if n is sufficiently large and 1 <= q < cn, then every n vertex graph with [n(2)/4] + q edges contains at least left perpendicularn/2right perpendicular(left perpendicularn/2right perpendicular - 1)(inverted right perpendicularn/2inverted left perpendicular - 2) copies of a five cycle. Similar statements hold for any odd cycle and the bounds are best possible. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2731 / 2740
页数:10
相关论文
共 9 条
[1]  
ERDOS P, 1962, MAGY TUD ACAD MAT KU, V4, P467
[2]  
Erdos P., 1967, THEORY GRAPHS INTERN, P117
[3]  
Erds P., 1962, Illinois J. Math, V6, P122
[4]  
Erds P., 1962, Magyar Tud. Akad. Math. Kutat Int. Kzl, V7, P459
[5]  
Lovsz L., 1983, Studies in Pure Math, P459
[6]  
Mantel W., 1907, WISKUNDIGE OPGAVEN, V10, P60
[7]  
MUBAYI D, COUNTING SUBST UNPUB, V3
[8]  
MUBAYI D, COUNTING SUBST UNPUB, V2
[9]  
Simonovits M., 1968, Theory of Graphs, P279