The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems

被引:82
作者
Marklof, Jens [1 ]
Strombergsson, Andreas [2 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
基金
英国工程与自然科学研究理事会;
关键词
SURE INVARIANCE-PRINCIPLE; STATISTICAL PROPERTIES; INFINITE-HORIZON; LIMIT; EQUIDISTRIBUTION; RECURRENCE; SYSTEMS;
D O I
10.4007/annals.2010.172.1949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The periodic Lorentz gas describes the dynamics of a point particle in a periodic array of spherical scatterers, and is one of the fundamental models for chaotic diffusion. In the present paper we investigate the Boltzmann-Grad limit, where the radius of each scatterer tends to zero, and prove the existence of a limiting distribution for the free path length. We also discuss related problems, such as the statistical distribution of directions of lattice points that are visible from a fixed position.
引用
收藏
页码:1949 / 2033
页数:85
相关论文
共 37 条
[1]  
[Anonymous], 1971, PUBLICATIONS MATH SO
[2]   Exponential Decay of Correlations in Multi-Dimensional Dispersing Billiards [J].
Balint, Peter ;
Toth, Imre Peter .
ANNALES HENRI POINCARE, 2008, 9 (07) :1309-1369
[3]   STATISTICAL PROPERTIES OF 2-DIMENSIONAL PERIODIC LORENTZ GAS WITH INFINITE HORIZON [J].
BLEHER, PM .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :315-373
[4]   The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit [J].
Boca, Florin P. ;
Zaharescu, Alexandru .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (02) :425-471
[5]   On the correlations of directions in the Euclidean plane [J].
Boca, FP ;
Zaharescu, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (04) :1797-1825
[6]   The correlations of Farey fractions [J].
Boca, FP ;
Zaharescu, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :25-39
[7]   Distribution of lattice points visible from the origin [J].
Boca, FP ;
Cobeli, C ;
Zaharescu, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (02) :433-470
[8]   The statistics of the trajectory of a certain billiard in a flat two-torus [J].
Boca, FP ;
Gologan, RN ;
Zaharescu, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (1-2) :53-73
[9]   ON THE BOLTZMANN-EQUATION FOR THE LORENTZ GAS [J].
BOLDRIGHINI, C ;
BUNIMOVICH, LA ;
SINAI, YG .
JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (03) :477-501
[10]   On the distribution of free path lengths for the periodic Lorentz gas [J].
Bourgain, J ;
Golse, F ;
Wennberg, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 190 (03) :491-508