Estimating Daytime Ecosystem Respiration to Improve Estimates of Gross Primary Production of a Temperate Forest

被引:4
作者
Sun, Jinwei [1 ,2 ]
Wu, Jiabing [1 ]
Guan, Dexin [1 ]
Yao, Fuqi [2 ]
Yuan, Fenghui [1 ]
Wang, Anzhi [1 ]
Jin, Changjie [1 ]
机构
[1] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110016, Peoples R China
[2] Changjiang River Sci Res Inst, Wuhan, Peoples R China
来源
PLOS ONE | 2014年 / 9卷 / 11期
基金
美国国家科学基金会;
关键词
PYRUVATE-DEHYDROGENASE COMPLEX; ELEVATED ATMOSPHERIC CO2; LEAF RESPIRATION; GAS-EXCHANGE; (CO2)-C-12 EMISSION; XANTHIUM-STRUMARIUM; SOIL RESPIRATION; DARK RESPIRATION; LIGHT-INHIBITION; PHOTOSYNTHESIS;
D O I
10.1371/journal.pone.0113512
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems.
引用
收藏
页数:18
相关论文
共 58 条
  • [1] Amthor J.S., 2001, Terrestrial Global Productivity, P33, DOI DOI 10.1016/B978-012505290-0/50004-1
  • [2] Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures
    Atkin, O. K.
    Scheurwater, I.
    Pons, T. L.
    [J]. NEW PHYTOLOGIST, 2007, 174 (02) : 367 - 380
  • [3] AVELANGE MH, 1991, PLANTA, V183, P150, DOI 10.1007/BF00197782
  • [4] Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest
    Barford, CC
    Wofsy, SC
    Goulden, ML
    Munger, JW
    Pyle, EH
    Urbanski, SP
    Hutyra, L
    Saleska, SR
    Fitzjarrald, D
    Moore, K
    [J]. SCIENCE, 2001, 294 (5547) : 1688 - 1691
  • [5] EFFECT OF TEMPERATURE ON THE CO2/O2 SPECIFICITY OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE OXYGENASE AND THE RATE OF RESPIRATION IN THE LIGHT - ESTIMATES FROM GAS-EXCHANGE MEASUREMENTS ON SPINACH
    BROOKS, A
    FARQUHAR, GD
    [J]. PLANTA, 1985, 165 (03) : 397 - 406
  • [6] Estimating daytime ecosystem respiration from eddy-flux data
    Bruhn, Dan
    Mikkelsen, Teis N.
    Herbst, Mathias
    Kutsch, Werner L.
    Ball, Marilyn C.
    Pilegaard, Kim
    [J]. BIOSYSTEMS, 2011, 103 (02) : 309 - 313
  • [7] Light inhibition of leaf respiration in field-grown Eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought
    Crous, Kristine Y.
    Zaragoza-Castells, Joana
    Ellsworth, David S.
    Duursma, Remko A.
    Loew, Markus
    Tissue, David T.
    Atkin, Owen K.
    [J]. PLANT CELL AND ENVIRONMENT, 2012, 35 (05) : 966 - 981
  • [8] On the variability of respiration in terrestrial ecosystems:: moving beyond Q10
    Davidson, EA
    Janssens, IA
    Luo, YQ
    [J]. GLOBAL CHANGE BIOLOGY, 2006, 12 (02) : 154 - 164
  • [9] A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest
    Davidson, EA
    Richardson, AD
    Savage, KE
    Hollinger, DY
    [J]. GLOBAL CHANGE BIOLOGY, 2006, 12 (02) : 230 - 239
  • [10] Gap filling strategies for defensible annual sums of net ecosystem exchange
    Falge, E
    Baldocchi, D
    Olson, R
    Anthoni, P
    Aubinet, M
    Bernhofer, C
    Burba, G
    Ceulemans, R
    Clement, R
    Dolman, H
    Granier, A
    Gross, P
    Grünwald, T
    Hollinger, D
    Jensen, NO
    Katul, G
    Keronen, P
    Kowalski, A
    Lai, CT
    Law, BE
    Meyers, T
    Moncrieff, H
    Moors, E
    Munger, JW
    Pilegaard, K
    Rannik, Ü
    Rebmann, C
    Suyker, A
    Tenhunen, J
    Tu, K
    Verma, S
    Vesala, T
    Wilson, K
    Wofsy, S
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2001, 107 (01) : 43 - 69