Theory of membrane capacitive deionization including the effect of the electrode pore space

被引:417
|
作者
Biesheuvel, P. M. [1 ,2 ]
Zhao, R. [1 ,2 ]
Porada, S. [2 ,3 ]
van der Wal, A. [4 ]
机构
[1] Wageningen Univ, Dept Environm Technol, NL-6708 WG Wageningen, Netherlands
[2] Wetsus, Ctr Excellence Sustainable Water Technol, NL-8900 CC Leeuwarden, Netherlands
[3] Wroclaw Univ Technol, Fac Chem, Dept Polymers & Carbon Mat, PL-50370 Wroclaw, Poland
[4] Voltea BV, NL-2171 AE Sassenheim, Netherlands
关键词
Porous carbon electrodes; Electrokinetics; Water desalination; Capacitive deionization; Ion-exchange membranes; Modified Donnan model; Electrostatic double layer models; Nernst-Planck equation; DOUBLE-LAYER; CARBON ELECTRODES; WATER; DESALINATION; PURIFICATION; AEROGEL; MODEL; IONS; CELL;
D O I
10.1016/j.jcis.2011.04.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Membrane capacitive deionization (MCDI) is a technology for water desalination based on applying an electrical field between two oppositely placed porous electrodes. Ions are removed from the water flowing through a channel in between the electrodes and are stored inside the electrodes. Ion-exchange membranes are placed in front of the electrodes allowing for counterion transfer from the channel into the electrode, while retaining the coions inside the electrode structure. We set up an extended theory for MCDI which includes in the description for the porous electrodes not only the electrostatic double layers (EDLs) formed inside the porous (carbon) particles, but also incorporates the role of the transport pathways in the electrode, i.e., the interparticle pore space. Because in MCDI the colons are inhibited from leaving the electrode region, the interparticle porosity becomes available as a reservoir to store salt, thereby increasing the total salt storage capacity of the porous electrode. A second advantage of MCDI is that during ion desorption (ion release) the voltage can be reversed. In that case the interparticle porosity can be depleted of counterions, thereby increasing the salt uptake capacity and rate in the next cycle. In this work, we compare both experimentally and theoretically adsorption/desorption cycles of MCDI for desorption at zero voltage as well as for reversed voltage, and compare with results for CDI. To describe the EDL-structure a novel modified Donnan model is proposed valid for small pores relative to the Debye length. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:239 / 248
页数:10
相关论文
共 50 条
  • [21] Nitrogen and sulfur co-doped carbon cryogel electrode for membrane capacitive deionization
    Liu, Ling
    Cui, Wendan
    Meng, Qinghan
    Tian, Guiying
    DESALINATION AND WATER TREATMENT, 2018, 132 : 134 - 143
  • [22] Mxene pseudocapacitive electrode material for capacitive deionization
    Zhang, Bingjie
    Boretti, Alberto
    Castelletto, Stefania
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [23] Effect of activated carbon electrode material characteristics on hardness control performance of membrane capacitive deionization
    Yoon, Hongsik
    Min, Taijin
    Kim, Sung-Hwan
    Lee, Gunhee
    Oh, Dasom
    Choi, Dong-Chan
    Kim, Seongsoo
    RSC ADVANCES, 2023, 13 (45) : 31480 - 31486
  • [24] Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization
    Yu, Jihyun
    Jo, Kyusik
    Kim, Taeyoung
    Lee, Jiho
    Yoon, Jeyong
    DESALINATION, 2018, 439 : 188 - 195
  • [25] Efficient and stable operation of capacitive deionization assessed by electrode and membrane asymmetry
    Barcelos, Kamilla M.
    Oliveira, Kaique S. G. C.
    Silva, Domingos S. A.
    Urquieta-Gonzalez, Ernesto A.
    Ruotolo, Luis A. M.
    ELECTROCHIMICA ACTA, 2021, 388
  • [26] Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis
    Kim, Y. -H.
    Tang, K.
    Chang, J.
    Sharma, K.
    Yiacoumi, S.
    Mayes, R. T.
    Bilheux, H. Z.
    Santodonato, L. J.
    Tsouris, C.
    SEPARATION SCIENCE AND TECHNOLOGY, 2019, 54 (13) : 2112 - 2125
  • [27] Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization
    Kim, Choonsoo
    Srimuk, Pattarachai
    Lee, Juhan
    Fleischmann, Simon
    Aslan, Mesut
    Presser, Volker
    CARBON, 2017, 122 : 329 - 335
  • [28] Ion selectivity in capacitive deionization with functionalized electrode: Theory and experimental validation
    Oyarzun, Diego, I
    Hemmatifar, Ali
    Palko, James W.
    Stadermann, Michael
    Santiago, Juan G.
    WATER RESEARCH X, 2018, 1
  • [29] Carbon-based electrode materials with ion exchange membranes for enhanced membrane capacitive deionization
    Sharma, Vartika
    Mishra, Shubham
    Raj, Savan K.
    Upadhyay, Prashant
    Kulshrestha, Vaibhav
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 676
  • [30] Effects of Pore Structure on the High-Performance Capacitive Deionization Using Chemically Activated Carbon Nanofibers
    Im, Ji Sun
    Kim, Jong Gu
    Lee, Young-Seak
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (03) : 2268 - 2273