Towards chemically accurate QM/MM simulations on GPUs

被引:2
作者
Jasz, Adam [1 ]
Rak, Adam [1 ]
Ladjanszki, Istvan [1 ]
Tornai, Gabor Janos [1 ]
Cserey, Gyorgy [2 ]
机构
[1] StreamNovation Ltd, Prater Utca 50-A, H-1083 Budapest, Hungary
[2] Pazmany Peter Catholic Univ, Fac Informat Technol & Bion, Prater Utca 50-A, H-1083 Budapest, Hungary
基金
欧盟地平线“2020”;
关键词
ONIOM; QM/MM; Merck molecular force field (MMFF94); Graphics processing unit (GPU); In silico research; MOLECULAR-FORCE FIELD; GEOMETRY OPTIMIZATION; ONIOM; IMPLEMENTATION; IMOMM;
D O I
10.1016/j.jmgm.2020.107536
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational chemistry simulations are extensively used to model natural phenomena. To maintain performance similar to molecular mechanics, but achieve comparable accuracy to quantum mechanical calculations, many researchers are using hybrid QM/MM methods. In this article we evaluate our GPU-accelerated ONIOM implementation by measurements on the crambin and HIV integrase proteins with different size QM model systems. We demonstrate that by using a larger QM region, a better energy accuracy can be achieved at the expense of simulation time. This trade-off is important to consider for the researcher running QM/MM calculations. Furthermore, we show that the ONIOM energy monotonically approaches the pure quantum mechanical energy of the whole system. The experiments are made feasible by utilizing the cutting-edge BrianQC quantum chemistry module for Hartree-Fock level SCF and our GPU-accelerated MMFF94 force field implementation for molecular mechanics calculations. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:5
相关论文
共 42 条
[1]   Real size of ligands, reactants and catalysts: Studies of structure, reactivity and selectivity by ONIOM and other hybrid computational approaches [J].
Ananikov, Valentine P. ;
Musaev, Djamaladdin G. ;
Morokuma, Keiji .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2010, 324 (1-2) :104-119
[2]  
[Anonymous], NEXT PLATFORM NVIDIA
[3]   Graphics processing unit (GPU) programming strategies and trends in GPU computing [J].
Brodtkorb, Andre R. ;
Hagen, Trond R. ;
Saetra, Martin L. .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2013, 73 (01) :4-13
[4]   The ONIOM Method and Its Applications [J].
Chung, Lung Wa ;
Sameera, W. M. C. ;
Ramozzi, Romain ;
Page, Alister J. ;
Hatanaka, Miho ;
Petrova, Galina P. ;
Harris, Travis V. ;
Li, Xin ;
Ke, Zhuofeng ;
Liu, Fengyi ;
Li, Hai-Bei ;
Ding, Lina ;
Morokuma, Keiji .
CHEMICAL REVIEWS, 2015, 115 (12) :5678-5796
[5]   HIV integrase, a brief overview from chemistry to therapeutics [J].
Craigie, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23213-23216
[6]   A new ONIOM implementation in Gaussian98.: Part I.: The calculation of energies, gradients, vibrational frequencies and electric field derivatives [J].
Dapprich, S ;
Komáromi, I ;
Byun, KS ;
Morokuma, K ;
Frisch, MJ .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1999, 461 :1-21
[7]   A NEW THIOGLUCOSIDE (R)-2-HYDROXY-3-BUTENYLGLUCOSINOLATE FROM CRAMBE ABYSSINICA SEED [J].
DAXENBIC.ME ;
VANETTEN, CH ;
WOLFF, IA .
BIOCHEMISTRY, 1965, 4 (02) :318-&
[8]   Parallel computing experiences with CUDA [J].
Garland, Michael ;
Le Grand, Scott ;
Nickolls, John ;
Anderson, Joshua ;
Hardwick, Jim ;
Morton, Scott ;
Phillips, Everett ;
Zhang, Yao ;
Volkov, Vasily .
IEEE MICRO, 2008, 28 (04) :13-27
[9]  
Halgren TA, 1996, J COMPUT CHEM, V17, P520, DOI 10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO
[10]  
2-W