Characterization of the Fourier series of a distribution having a value at a point

被引:14
作者
Estrada, R [1 ]
机构
[1] TEXAS A&M UNIV, DEPT MATH, COLLEGE STN, TX 77843 USA
关键词
D O I
10.1090/S0002-9939-96-03174-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be a periodic distribution of period 2 pi. Let Sigma(n=-infinity)(infinity) a(n)e(in theta) be its Fourier series. We show that the distributional point value f(theta(0)) exists and equals gamma if and only if the partial sum Sigma(-x less than or equal to n less than or equal to ax) a(n)e(in theta 0)) converge to gamma in the Cesaro sense as x --> infinity for each a > 0.
引用
收藏
页码:1205 / 1212
页数:8
相关论文
共 14 条
[1]  
[Anonymous], MULTIDIMENSIONAL TAU
[2]  
BERNDT BC, 1985, J REINE ANGEW MATH, V361, P118
[3]   ASYMPTOTIC SEPARATION OF VARIABLES [J].
ESTRADA, R ;
KANWAL, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 178 (01) :130-142
[4]  
ESTRADA R, 1992, APPL ANAL, V43, P191
[5]  
Estrada R., 1994, ASYMPTOTIC ANAL DIST
[6]  
ESTRADA R, 1994, MEM 2 ENC CENTR MAT
[7]  
Hardy G. H., 1949, Divergent Series
[8]  
Kanwal R. P., 1983, GEN FUNCTIONS THEORY
[9]  
Lojasiewicz S, 1957, STUD MATH, V16, P1
[10]  
Ramanujan S., 1957, NOTEBOOKS