共 50 条
Clamping end-tidal carbon dioxide during graded exercise with control of inspired oxygen
被引:4
作者:
Farra, Saro D.
[1
]
Kessler, Cathie
[1
]
Duffin, James
[2
]
Wells, Greg D.
[1
]
Jacobs, Ira
[1
]
机构:
[1] Univ Toronto, Fac Kinesiol & Phys Educ, 55 Harbord St,Room 2080, Toronto, ON M5S 2W6, Canada
[2] Univ Toronto, Dept Physiol, Toronto, ON, Canada
关键词:
Isocapnia;
Carbon dioxide clamp;
Exercise;
Hypoxia;
Sequential gas delivery;
PRECISE CONTROL;
MUSCLE FATIGUE;
ARTERIAL PCO2;
PERFORMANCE;
HYPOXIA;
CO2;
VENTILATION;
D O I:
10.1016/j.resp.2016.05.013
中图分类号:
Q4 [生理学];
学科分类号:
071003 ;
摘要:
Exercise- and hypoxia-induced hyperventilation decreases the partial pressure of end-tidal carbon dioxide (PETCO2), which in turn exerts many physiological effects. Several breathing circuits that control PETCO2 have been previously described, but their designs are not satisfactory for exercise studies where changes in inspired oxygen (F1O2) may be desired. This study is the first report of a breathing system that can maintain PETCO2 constant within a single session of graded submaximal exercise and graded hypoxia. Thirteen fit and healthy subjects completed two bouts of exercise consisting of three 3 min stages on a cycle ergometer with increasing exercise intensity in normoxia (Part A; 142 +/- 14, 167 +/- 14, 192 +/- 14W) or with decreasing F1O2 at a constant exercise intensity (Part B; 21, 18, and 14%). One bout was a control (CON) where PETCO2 was not manipulated, while during the other bout the investigator clamped PETCO2 within 2 mmHg (CO2Clamp) using sequential gas delivery(SGD). During the final 30 s of each exercise stage during CO2Clamp, PETCO2 was successfully maintained in Part A (43 +/- 4, 44 +/- 4, 44 +/- 3 mmHg; P=0.44) and Part B (45 +/- 3, 46 +/- 3, 45 +/- 3 mmHg; P=0.68) despite the increases in ventilation due to exercise. These findings demonstrate that this SGD circuit can be used to maintain isocapania in exercising humans during progressively increasing exercise intensities and changing F1O2. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条