Thermal Annealing and Doping Induced Tailoring of Phase and Upconversion Luminescence of NaYF4:Yb Er Microcrystals

被引:4
作者
Nannuri, Shivanand H. [1 ,2 ]
Adnan, Sana [1 ]
Subash, C. K. [3 ]
Santhosh, C. [1 ,4 ]
George, Sajan D. [1 ,2 ]
机构
[1] Manipal Acad Higher Educ, Dept Atom & Mol Phys, Manipal 576104, Karnataka, India
[2] Manipal Acad Higher Educ, Ctr Appl Nanosci, Manipal 576104, Karnataka, India
[3] Ctr Nano & Softmatter Sci Bengaluru, Bengaluru, India
[4] Manipal Acad Higher Educ, Ctr Excellence Biophoton, Manipal 576104, Karnataka, India
关键词
Upconversion luminescence; co-precipitation method; co-doping; luminescence enhancement; thermal-annealing; ENERGY MIGRATION; HEXAGONAL-PHASE; NANOPARTICLES; NANOCRYSTALS; LANTHANIDE; EMISSION; CRYSTALS;
D O I
10.1080/15567265.2022.2028044
中图分类号
O414.1 [热力学];
学科分类号
摘要
The influence of Mn2+ ion concentration (x = 0-20 mol%) as well as the role of thermal-annealing temperature (400-600 degrees C) on the structural as well as luminescence properties of NaYF4:Yb, Er (Y: 78-x%, Yb: 20%, Er: 2%) microcrystals prepared via a coprecipitation method is investigated. The cubic phase of the as-prepared NaYF4:Yb, Er (Y: 78%, Yb: 20%, Er: 2%) was found to remain intact upon the addition of the Mn2+ ions, but the thermalannealing elucidates that the phase of the sample depends upon the annealing temperature as well as the Mn2+ ion concentration. Among the Mn2+ ion co-doped samples, 3 mol% doped samples dominant to have a maximum positive influence on the upconversion luminescence of the sample, and a further increase in concentration leads to the concentration-induced quenching of the upconversion luminescence. Moreover, the enhancement factor of green (H-2(11/2) -> I-4(15)/2 and S-4(3/2) -> I-4(15/2)), as well as red (F-4(9/2) -> I-4(15/2)) emission, depend upon the annealing temperature, with a maximum enhancement factor of 5 and 3.12 times for the sample annealed at 400 degrees C, 8.6 and 7.25 times for the sample annealed at 500 degrees C, and 6 and 4 times for the sample annealed at 600 degrees C, as compared to Mn2+ ion undoped samples. The maximum emission strength for the green as well as red is observed for the sample annealed at 600 degrees C and co-doped with 3 mol Mn2+ ions. The laser power-dependent study on all the samples shows that the upconversion process is a multi-photon process, predominantly a two-photon process. [GRAPHICS] .
引用
收藏
页码:1 / 16
页数:16
相关论文
共 48 条
[1]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[2]   Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics [J].
Chen, Guanying ;
Qju, Hailong ;
Prasad, Paras N. ;
Chen, Xiaoyuan .
CHEMICAL REVIEWS, 2014, 114 (10) :5161-5214
[3]   Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy [J].
Cheng, Liang ;
Wang, Chao ;
Liu, Zhuang .
NANOSCALE, 2013, 5 (01) :23-37
[4]   Upconversion luminescence enhancement in NaYF4: Yb3+, Er3+ nanoparticles induced by Cd2+ tridoping [J].
Cong, Tie ;
Ding, Yadan ;
Yu, Xueqing ;
Mu, Yue ;
Hong, Xia ;
Liu, Yichun .
MATERIALS RESEARCH BULLETIN, 2017, 90 :151-155
[5]   Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review [J].
DaCosta, Matthew V. ;
Doughan, Samer ;
Han, Yi ;
Krull, Ulrich J. .
ANALYTICA CHIMICA ACTA, 2014, 832 :1-33
[6]   Simultaneous morphology manipulation and upconversion luminescence enhancement of β-NaYF4:Yb3+/Er3+ microcrystals by simply tuning the KF dosage [J].
Ding, Mingye ;
Chen, Daqin ;
Yin, Shilong ;
Ji, Zhenguo ;
Zhong, Jiasong ;
Ni, Yaru ;
Lu, Chunhua ;
Xu, Zhongzi .
SCIENTIFIC REPORTS, 2015, 5
[7]   Energy transfer in lanthanide upconversion studies for extended optical applications [J].
Dong, Hao ;
Sun, Ling-Dong ;
Yan, Chun-Hua .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (06) :1608-1634
[8]   Basic understanding of the lanthanide related upconversion emissions [J].
Dong, Hao ;
Sun, Ling-Dong ;
Yan, Chun-Hua .
NANOSCALE, 2013, 5 (13) :5703-5714
[9]   Size-Dependent Maximization of Upconversion Efficiency of Citrate-Stabilized ß-phase NaYF4:Yb3+,Er3+ Crystals via Annealing [J].
Dyck, Nathan C. ;
van Veggel, Frank C. J. M. ;
Demopoulos, George P. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :11661-11667
[10]   Highly efficient upconversion luminescence in hexagonal NaYF4:Yb3+, Er3+ nanocrystals synthesized by a novel reverse microemulsion method [J].
Gunaseelan, M. ;
Yamini, S. ;
Kumar, G. A. ;
Senthilselvan, J. .
OPTICAL MATERIALS, 2018, 75 :174-186