共 48 条
Thermal Annealing and Doping Induced Tailoring of Phase and Upconversion Luminescence of NaYF4:Yb Er Microcrystals
被引:4
作者:
Nannuri, Shivanand H.
[1
,2
]
Adnan, Sana
[1
]
Subash, C. K.
[3
]
Santhosh, C.
[1
,4
]
George, Sajan D.
[1
,2
]
机构:
[1] Manipal Acad Higher Educ, Dept Atom & Mol Phys, Manipal 576104, Karnataka, India
[2] Manipal Acad Higher Educ, Ctr Appl Nanosci, Manipal 576104, Karnataka, India
[3] Ctr Nano & Softmatter Sci Bengaluru, Bengaluru, India
[4] Manipal Acad Higher Educ, Ctr Excellence Biophoton, Manipal 576104, Karnataka, India
关键词:
Upconversion luminescence;
co-precipitation method;
co-doping;
luminescence enhancement;
thermal-annealing;
ENERGY MIGRATION;
HEXAGONAL-PHASE;
NANOPARTICLES;
NANOCRYSTALS;
LANTHANIDE;
EMISSION;
CRYSTALS;
D O I:
10.1080/15567265.2022.2028044
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
The influence of Mn2+ ion concentration (x = 0-20 mol%) as well as the role of thermal-annealing temperature (400-600 degrees C) on the structural as well as luminescence properties of NaYF4:Yb, Er (Y: 78-x%, Yb: 20%, Er: 2%) microcrystals prepared via a coprecipitation method is investigated. The cubic phase of the as-prepared NaYF4:Yb, Er (Y: 78%, Yb: 20%, Er: 2%) was found to remain intact upon the addition of the Mn2+ ions, but the thermalannealing elucidates that the phase of the sample depends upon the annealing temperature as well as the Mn2+ ion concentration. Among the Mn2+ ion co-doped samples, 3 mol% doped samples dominant to have a maximum positive influence on the upconversion luminescence of the sample, and a further increase in concentration leads to the concentration-induced quenching of the upconversion luminescence. Moreover, the enhancement factor of green (H-2(11/2) -> I-4(15)/2 and S-4(3/2) -> I-4(15/2)), as well as red (F-4(9/2) -> I-4(15/2)) emission, depend upon the annealing temperature, with a maximum enhancement factor of 5 and 3.12 times for the sample annealed at 400 degrees C, 8.6 and 7.25 times for the sample annealed at 500 degrees C, and 6 and 4 times for the sample annealed at 600 degrees C, as compared to Mn2+ ion undoped samples. The maximum emission strength for the green as well as red is observed for the sample annealed at 600 degrees C and co-doped with 3 mol Mn2+ ions. The laser power-dependent study on all the samples shows that the upconversion process is a multi-photon process, predominantly a two-photon process. [GRAPHICS] .
引用
收藏
页码:1 / 16
页数:16
相关论文