Fuzzy neural networks for tuning PID controller for plants with underdamped responses

被引:42
作者
Shen, JC [1 ]
机构
[1] Natl Huwei Inst Technol, Dept Automat Engn, Huwei 632, Yunlin, Taiwan
关键词
adaptive neuro-fuzzy inference system (ANFIS); fuzzy neural networks; proportional-integral-derivative (PID) controller; underdamped systems;
D O I
10.1109/91.919254
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the fuzzy neural network (FNN) for tuning proportional-integral-derivative (PID) controller for plants with underdamped step responses is proposed, The underdamped systems are modeled by second-order pins dead-time transfer functions. For deriving the FNN, the dominant pole assignment method is applied to design the PID controllers for a batch of test plant models that represent the plants with underdamped responses. Then, a fuzzy neural modeling method is utilized to identify the relationship between the parameters that characterize the plant dynamics and the controller parameters. We then utilize the obtained FNN to tune the PID controller for plants with underdamped responses. Several simulation examples are given to demonstrate the effectiveness and robustness of the FNN obtained.
引用
收藏
页码:333 / 342
页数:10
相关论文
共 18 条
  • [1] Astrom K. J., 1995, PID CONTROLLERS THEO
  • [2] Astrom K.J., 1993, Control Eng. Pract, V1, P699, DOI [10.1016/0967-0661(93)91394-C, DOI 10.1016/0967-0661(93)91394-C]
  • [3] Chai T., 1997, ACTA AUTOMATICA SINI, V23, P167
  • [4] CHIEN IL, 1990, CHEM ENG PROG, V86, P33
  • [5] Cohen G., 1953, Transactions of the ASME, P827, DOI DOI 10.1115/1.4015451
  • [6] Ender D. B., 1993, PROCESS CONTROL PERF
  • [7] REFINEMENTS OF THE ZIEGLER-NICHOLS TUNING FORMULA
    HANG, CC
    ASTROM, KJ
    HO, WK
    [J]. IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1991, 138 (02): : 111 - 118
  • [8] TUNING OF PID CONTROLLERS BASED ON GAIN AND PHASE MARGIN SPECIFICATIONS
    HO, WK
    HANG, CC
    CAO, LS
    [J]. AUTOMATICA, 1995, 31 (03) : 497 - 502
  • [9] Ho WK, 1997, IEEE T CONTR SYST T, V5, P446, DOI 10.1109/87.595926
  • [10] ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM
    JANG, JSR
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03): : 665 - 685