Class numbers of some abelian extensions of rational function fields

被引:0
作者
Bae, SH [1 ]
Jung, HY [1 ]
Ahn, JY [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
关键词
class number; function field;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P be a monic irreducible polynomial. In this paper we generalize the determinant formula for h(K-Pn(+)) of Bae and Kang and the formula for h(-) (K-Pn) of Jung and Ahn to any subfields K of the cyclotomic function field K-Pn: By using these formulas, we calculate the class numbers h(-) (K), h(K+) of all subfields K of K-P when q and deg(P) are small.
引用
收藏
页码:377 / 386
页数:10
相关论文
共 9 条
[1]  
Angles B., 1997, DRINFELD MODULES MOD, P261
[2]  
Artin Emil, 1965, COLLECTED PAPERS E A
[3]   Class numbers of cyclotomic function fields [J].
Bae, S ;
Kang, PL .
ACTA ARITHMETICA, 2002, 102 (03) :251-259
[4]  
BAE S, IN PRESS T AM MATH S
[5]   THE RELATIVE CLASS-NUMBERS OF IMAGINARY CYCLIC FIELDS OF DEGREES 4, 6, 8, AND 10 [J].
GIRSTMAIR, K .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :881-887
[6]   On the relative class number of cyclotomic function fields [J].
Jung, H ;
Ahn, J .
ACTA ARITHMETICA, 2003, 107 (01) :91-101
[7]   Demjanenko matrix and recursion formula for relative class number over function fields [J].
Jung, HY ;
Ahn, J .
JOURNAL OF NUMBER THEORY, 2003, 98 (01) :55-66
[8]   Formulae for the relative class number of an imaginary abelian field in the form of a determinant [J].
Kucera, R .
NAGOYA MATHEMATICAL JOURNAL, 2001, 163 :167-191
[9]   Stickelberger ideals and relative class numbers in function fields [J].
Yin, LS .
JOURNAL OF NUMBER THEORY, 2000, 81 (01) :162-169