3D two-temperature magnetohydrodynamic modeling of fast thermal quenches due t o injected impurities in tokamaks

被引:40
作者
Ferraro, N. M. [1 ]
Lyons, B. C. [2 ]
Kim, C. C. [3 ]
Liu, Y. Q. [2 ]
Jardin, S. C. [1 ]
机构
[1] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[2] Gen Atom Co, San Diego, CA USA
[3] SLS2 Consulting, San Diego, CA USA
关键词
tokamaks; disruptions; disruption mitigation; RUNAWAY ELECTRONS; DISRUPTION MITIGATION; FINITE-ELEMENT; SHUTDOWN; PLASMA; ITER; JET; MHD;
D O I
10.1088/1741-4326/aae990
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An integrated model for the ionization, radiation, and advection of impurities in the extended-magnetohydrodynamic code M3D-Cl is described. This implementation makes use of the KPRAD model, which calculates bremsstrahlung radiation and impurity ionization, recombination, and radiation rates using a model in which the density of each charge state is advanced separately. The integrated model presented here allows the independent evolution of electron and ion temperatures, which is necessary to accurately model cases where the electron temperature drops more quickly than the electron-ion thermal equilibration time. This model is used to simulate the disruption of a model NSTX discharge caused by the introduction of argon impurities, using physically realistic resistivity. Despite well-mixed impurities, contraction of the current channel is found to lead to magnetohydrodynamic instabilities that result in stochastization of the magnetic field, a fast thermal quench, and localized parallel electric fields that can exceed the axisymmetric values by a factor of five for brief periods.
引用
收藏
页数:10
相关论文
共 36 条
[21]   A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions [J].
Jardin, S. C. ;
Breslau, J. ;
Ferraro, N. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) :2146-2174
[22]   A fast shutdown technique for large tokamaks [J].
Jardin, SC ;
Schmidt, GL ;
Fredrickson, ED ;
Hill, KW ;
Hyun, J ;
Merrill, BJ ;
Sayer, R .
NUCLEAR FUSION, 2000, 40 (05) :923-933
[23]   A triangular finite element with first-derivative continuity applied to fusion MHD applications [J].
Jardin, SC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 200 (01) :133-152
[24]   Disruptions in ITER and strategies for their control and mitigation [J].
Lehnen, M. ;
Aleynikova, K. ;
Aleynikov, P. B. ;
Campbell, D. J. ;
Drewelow, P. ;
Eidietis, N. W. ;
Gasparyan, Yu. ;
Granetz, R. S. ;
Gribov, Y. ;
Hartmann, N. ;
Hollmann, E. M. ;
Izzo, V. A. ;
Jachmich, S. ;
Kim, S. -H. ;
Kocan, M. ;
Koslowski, H. R. ;
Kovalenko, D. ;
Kruezi, U. ;
Loarte, A. ;
Maruyama, S. ;
Matthews, G. F. ;
Parks, P. B. ;
Pautasso, G. ;
Pitts, R. A. ;
Reux, C. ;
Riccardo, V. ;
Roccella, R. ;
Snipes, J. A. ;
Thornton, A. J. ;
de Vries, P. C. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :39-48
[25]   DYNAMICS AND ENERGY-FLOW IN A DISRUPTING TOKAMAK PLASMA [J].
MERRILL, BJ ;
JARDIN, SC ;
ULRICKSON, M ;
BELL, M .
FUSION ENGINEERING AND DESIGN, 1991, 15 (02) :163-180
[26]   Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK [J].
Nardon, E. ;
Fil, A. ;
Hoelzl, M. ;
Huijsmans, G. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. ;
Axton, M. D. ;
Ayres, C. ;
Bachmann, C. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
[27]   Contribution of ASDEX Upgrade to disruption studies for ITER [J].
Pautasso, G. ;
Zhang, Y. ;
Reiter, B. ;
Giannone, L. ;
Gruber, O. ;
Herrmann, A. ;
Kardaun, O. ;
Khayrutdinov, K. K. ;
Lukash, V. E. ;
Maraschek, M. ;
Mlynek, A. ;
Nakamura, Y. ;
Schneider, W. ;
Sias, G. ;
Sugihara, M. .
NUCLEAR FUSION, 2011, 51 (10)
[28]   Simulation of MGI efficiency for plasma energy conversion into Ar radiation in JET and implications for ITER [J].
Pestchanyi, Serguei ;
Koslowski, Rudi ;
Reux, Cedric ;
Lehnen, Michael .
FUSION ENGINEERING AND DESIGN, 2015, 96-97 :685-689
[29]   Modelling of NSTX hot vertical displacement events using M3D-C1 [J].
Pfefferle, D. ;
Ferraro, N. ;
Jardin, S. C. ;
Krebs, I. ;
Bhattacharjee, A. .
PHYSICS OF PLASMAS, 2018, 25 (05)
[30]   Halo current, runaway electrons and disruption mitigation in ITER [J].
Putvinski, S ;
Barabaschi, P ;
Fujisawa, N ;
Putvinskaya, N ;
Rosenbluth, MN ;
Wesley, J .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 :B157-B171