3D two-temperature magnetohydrodynamic modeling of fast thermal quenches due t o injected impurities in tokamaks

被引:40
作者
Ferraro, N. M. [1 ]
Lyons, B. C. [2 ]
Kim, C. C. [3 ]
Liu, Y. Q. [2 ]
Jardin, S. C. [1 ]
机构
[1] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[2] Gen Atom Co, San Diego, CA USA
[3] SLS2 Consulting, San Diego, CA USA
关键词
tokamaks; disruptions; disruption mitigation; RUNAWAY ELECTRONS; DISRUPTION MITIGATION; FINITE-ELEMENT; SHUTDOWN; PLASMA; ITER; JET; MHD;
D O I
10.1088/1741-4326/aae990
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An integrated model for the ionization, radiation, and advection of impurities in the extended-magnetohydrodynamic code M3D-Cl is described. This implementation makes use of the KPRAD model, which calculates bremsstrahlung radiation and impurity ionization, recombination, and radiation rates using a model in which the density of each charge state is advanced separately. The integrated model presented here allows the independent evolution of electron and ion temperatures, which is necessary to accurately model cases where the electron temperature drops more quickly than the electron-ion thermal equilibration time. This model is used to simulate the disruption of a model NSTX discharge caused by the introduction of argon impurities, using physically realistic resistivity. Despite well-mixed impurities, contraction of the current channel is found to lead to magnetohydrodynamic instabilities that result in stochastization of the magnetic field, a fast thermal quench, and localized parallel electric fields that can exceed the axisymmetric values by a factor of five for brief periods.
引用
收藏
页数:10
相关论文
共 36 条
[1]  
[Anonymous], TRANSPORT
[2]   Pivotal issues on relativistic electrons in ITER [J].
Boozer, Allen H. .
NUCLEAR FUSION, 2018, 58 (03)
[3]   Runaway electrons and ITER [J].
Boozer, Allen H. .
NUCLEAR FUSION, 2017, 57 (05)
[4]   Marginal stability model for the decay of runaway electron current [J].
Breizman, Boris N. .
NUCLEAR FUSION, 2014, 54 (07)
[5]   First demonstration of rapid shutdown using neon shattered pellet injection for thermal quench mitigation on DIII-D [J].
Commaux, N. ;
Shiraki, D. ;
Baylor, L. R. ;
Hollmann, E. M. ;
Eidietis, N. W. ;
Lasnier, C. J. ;
Moyer, R. A. ;
Jernigan, T. C. ;
Meitner, S. J. ;
Combs, S. K. ;
Foust, C. R. .
NUCLEAR FUSION, 2016, 56 (04)
[6]   Demonstration of rapid shutdown using large shattered deuterium pellet injection in DIII-D [J].
Commaux, N. ;
Baylor, L. R. ;
Jernigan, T. C. ;
Hollmann, E. M. ;
Parks, P. B. ;
Humphreys, D. A. ;
Wesley, J. C. ;
Yu, J. H. .
NUCLEAR FUSION, 2010, 50 (11)
[7]   RELATIVISTIC LIMITATIONS ON RUNAWAY ELECTRONS [J].
CONNOR, JW ;
HASTIE, RJ .
NUCLEAR FUSION, 1975, 15 (03) :415-424
[8]   Nonlinear reconnecting edge localized modes in current-carrying plasmas [J].
Ebrahimi, F. .
PHYSICS OF PLASMAS, 2017, 24 (05)
[9]   Dynamo-driven plasmoid formation from a current-sheet instability [J].
Ebrahimi, F. .
PHYSICS OF PLASMAS, 2016, 23 (12)
[10]   Transport simulations of the pre-thermal-quench phase in ASDEX Upgrade massive gas injection experiments [J].
Fable, E. ;
Pautasso, G. ;
Lehnen, M. ;
Dux, R. ;
Bernert, M. ;
Mlynek, A. .
NUCLEAR FUSION, 2016, 56 (02)