Multiple Loop Fuzzy Neural Network Fractional Order Sliding Mode Control of Micro Gyroscope

被引:6
作者
Fang, Yunmei [1 ]
Chen, Fang [1 ]
Fei, Juntao [1 ,2 ]
机构
[1] Hohai Univ, Coll Mech & Elect Engn, Changzhou 213022, Peoples R China
[2] Jiangsu Key Lab Power Transmiss & Distribut Equip, Changzhou 213022, Peoples R China
基金
美国国家科学基金会;
关键词
micro gyroscope; double feedback fuzzy neural network; neural network; fractional order; sliding mode control;
D O I
10.3390/math9172124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an adaptive double feedback fuzzy neural fractional order sliding control approach is presented to solve the problem that lumped parameter uncertainties cannot be measured and the parameters are unknown in a micro gyroscope system. Firstly, a fractional order sliding surface is designed, and the fractional order terms can provide additional freedom and improve the control accuracy. Then, the upper bound of lumped nonlinearities is estimated online using a double feedback fuzzy neural network. Accordingly, the gain of switching law is replaced by the estimated value. Meanwhile, the parameters of the double feedback fuzzy network, including base widths, centers, output layer weights, inner gains, and outer gains, can be adjusted in real time in order to improve the stability and identification efficiency. Finally, the simulation results display the performance of the proposed approach in terms of convergence speed and track speed.
引用
收藏
页数:20
相关论文
共 26 条
[11]   Dynamics and control of a gyroscope-stabilized platform in a ship anti-aircraft rocket missile launcher [J].
Koruba, Zbigniew .
ADVANCES IN MECHATRONIC SYSTEMS, MECHANICS AND MATERIALS, 2013, 196 :124-139
[12]   Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone [J].
Lahdenoja, Olli ;
Hurnanen, Tero ;
Iftikhar, Zuhair ;
Nieminen, Sami ;
Knuutila, Timo ;
Saraste, Antti ;
Kiviniemi, Tuomas ;
Vasankari, Tuija ;
Airaksinen, Juhani ;
Pankaala, Mikko ;
Koivisto, Tero .
IEEE Journal of Biomedical and Health Informatics, 2018, 22 (01) :108-118
[13]   Observer-Based Fuzzy Adaptive Finite-Time Containment Control of Nonlinear Multiagent Systems With Input Delay [J].
Li, Yongming ;
Qu, Fuyi ;
Tong, Shaocheng .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (01) :126-137
[14]   Finite-Time Adaptive Fuzzy Output Feedback Dynamic Surface Control for MIMO Nonstrict Feedback Systems [J].
Li, Yongming ;
Li, Kewen ;
Tong, Shaocheng .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (01) :96-110
[15]   Intelligent Backstepping Control Using Recurrent Feature Selection Fuzzy Neural Network for Synchronous Reluctance Motor Position Servo Drive System [J].
Lin, Faa-Jeng ;
Chen, Shih-Gang ;
Hsu, Che-Wei .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (03) :413-427
[16]   Robust Dynamic Sliding-Mode Control Using Adaptive RENN for Magnetic Levitation System [J].
Lin, Faa-Jeng ;
Chen, Syuan-Yi ;
Shyu, Kuo-Kai .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (06) :938-951
[17]   Nonlinear fractional-order power system stabilizer for multi-machine power systems based on sliding mode technique [J].
Majidabad, Sajjad Shoja ;
Shandiz, Heydar Toosian ;
Hajizadeh, Amin .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (10) :1548-1568
[18]   Adaptive control schemes applied to a control moment gyroscope of 2 degrees of freedom [J].
Montoya-Chairez, Jorge ;
Santibanez, Victor ;
Moreno-Valenzuela, Javier .
MECHATRONICS, 2019, 57 :73-85
[19]   An incremental meta-cognitive-based scaffolding fuzzy neural network [J].
Pratama, Mahardhika ;
Lu, Jie ;
Anavatti, Sreenatha ;
Lughofer, Edwin ;
Lim, Chee-Peng .
NEUROCOMPUTING, 2016, 171 :89-105
[20]   An Improved Fuzzy Neural Network for Traffic Speed Prediction Considering Periodic Characteristic [J].
Tang, Jinjun ;
Liu, Fang ;
Zou, Yajie ;
Zhang, Weibin ;
Wang, Yinhai .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (09) :2340-2350