Some functional equations related to number theory

被引:5
作者
Zeglami, D. [1 ]
机构
[1] Moulay Ismail Univ, Dept Math, ENSAM, BP 15290 Al Mansour, Meknes, Morocco
关键词
functional equation; number theory; multiplicative function; character; additive function;
D O I
10.1007/s10474-016-0634-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new functional equation (E(alpha)), which is originating from the product in the number field . We give an explicit description of the solutions of this equation for and investigate these results to find the solutions of d'Alembert's type and a Van Vleck's functional equations originating from number theory. Our considerations refer to the paper [2] in which L. R. Berrone and L. Dieulefait determine, for a fixed real , the real valued solutions of the equation f(x(1), y(1)) f(x(1), y(1)) = f((x(1)x(2)) + alpha y(1)y(2), x(1)y(2) + x(2)y(1), (x(1), y(1)), (x(2), y(2)) is an element of R-2
引用
收藏
页码:490 / 508
页数:19
相关论文
共 12 条
[1]  
Aczel J., 1989, ENCY MATH APPL, V31
[2]   A functional equation related to the product in a quadratic number field [J].
Berrone, Lucio R. ;
Dieulefait, Luis V. .
AEQUATIONES MATHEMATICAE, 2011, 81 (1-2) :167-175
[3]  
Bouikhalene B., 2013, EXTRACTA MATH, V28, P157
[4]   Reconsidering a functional equation arising from number theory [J].
Ebanks, Bruce .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (1-2) :135-147
[5]   Some functional equations originating from number theory [J].
Jung, SM ;
Bae, JH .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2003, 113 (02) :91-98
[6]  
Kannappan P, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-89492-8_1
[7]  
Milovanovic GV., 2014, Analytic Number Theory, Approximation Theory, and Special Functions
[8]  
Sinopoulos P., 2000, Aequationes Math, V59, P255, DOI [10.1007/s000100050125, DOI 10.1007/S000100050125]
[9]  
Stetkaer H., 2013, FUNCTIONAL EQUATIONS
[10]   Van Vleck's functional equation for the sine [J].
Stetkaer, Henrik .
AEQUATIONES MATHEMATICAE, 2016, 90 (01) :25-34