STABILITY OF STEADY STATES OF THE NAVIER-STOKES-POISSON EQUATIONS WITH NON-FLAT DOPING PROFILE

被引:38
作者
Tan, Zhong [1 ,2 ]
Wang, Yanjin [1 ,2 ]
Wang, Yong [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & Sci Comp, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Poisson equations; stability; energy method; time decay; CONVERGENCE-RATES; EXISTENCE; BEHAVIOR; DECAY; FORCE;
D O I
10.1137/130950069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stability of the steady state of the compressible Navier-StokesPoisson equations with the non-flat doping profile. We prove the global existence of classical solutions near the steady state for the large doping profile. For the small doping profile, we prove the time decay rates of the solution provided that the initial perturbation belongs to L-p with 1 <= p < 3/2.
引用
收藏
页码:179 / 209
页数:31
相关论文
共 16 条
[1]   Optimal convergence rates for the compressible Navier-Stokes equations with potential forces [J].
Duan, Renjun ;
Ukai, Seiji ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :737-758
[2]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[3]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[4]  
Grafakos L., 2004, Classical and Modern Fourier Analysis
[5]   Decay of Dissipative Equations and Negative Sobolev Spaces [J].
Guo, Yan ;
Wang, Yanjin .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) :2165-2208
[6]   The asymptotic behaviour of global smooth solutions to the multi-dimensional hydrodynamic model for semiconductors [J].
Hsiao, L ;
Ju, QC ;
Wang, S .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (14) :1187-1210
[7]   Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space [J].
Ju, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (02) :365-376
[8]  
Kobayashi T., 2008, ADV MATH SCI APPL, V18, P141
[9]  
Li HL, 2010, ARCH RATION MECH AN, V196, P681, DOI 10.1007/s00205-009-0255-4
[10]  
Lions P.-L., 1998, OXFORD LECT SER MATH, V2