Direct Photonic Coupling of a Semiconductor Quantum Dot and a Trapped Ion

被引:59
作者
Meyer, H. M. [1 ,2 ]
Stockill, R. [1 ]
Steiner, M. [1 ]
Le Gall, C. [1 ]
Matthiesen, C. [1 ]
Clarke, E. [3 ]
Ludwig, A. [4 ]
Reichel, J. [5 ]
Atatuere, M. [1 ]
Koehl, M. [1 ,2 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] Univ Bonn, Inst Phys, D-53115 Bonn, Germany
[3] Univ Sheffield, EPSRC Natl Ctr Technol 3 5, Sheffield S1 3JD, S Yorkshire, England
[4] Ruhr Univ Bochum, Lehrstuhl Angew Festkorperphys, D-44780 Bochum, Germany
[5] Ecole Normale Super, Lab Kastler Brossel, F-75005 Paris, France
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 欧盟第七框架计划;
关键词
SINGLE PHOTONS; DIAMOND; NETWORKS; SPINS; ATOMS; BITS;
D O I
10.1103/PhysRevLett.114.123001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb+ ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the sigma(z) projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.
引用
收藏
页数:5
相关论文
共 42 条
[1]   Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot [J].
Akopian, N. ;
Wang, L. ;
Rastelli, A. ;
Schmidt, O. G. ;
Zwiller, V. .
NATURE PHOTONICS, 2011, 5 (04) :230-233
[2]   Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide [J].
Arcari, M. ;
Sollner, I. ;
Javadi, A. ;
Hansen, S. Lindskov ;
Mahmoodian, S. ;
Liu, J. ;
Thyrrestrup, H. ;
Lee, E. H. ;
Song, J. D. ;
Stobbe, S. ;
Lodahl, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[3]   Quantum-dot spin-state preparation with near-unity fidelity [J].
Atatüre, M ;
Dreiser, J ;
Badolato, A ;
Högele, A ;
Karrai, K ;
Imamoglu, A .
SCIENCE, 2006, 312 (5773) :551-553
[4]   Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors [J].
Awschalom, David D. ;
Bassett, Lee C. ;
Dzurak, Andrew S. ;
Hu, Evelyn L. ;
Petta, Jason R. .
SCIENCE, 2013, 339 (6124) :1174-1179
[5]   Acoustic phonon broadening mechanism in single quantum dot emission [J].
Besombes, L ;
Kheng, K ;
Marsal, L ;
Mariette, H .
PHYSICAL REVIEW B, 2001, 63 (15)
[6]   Entangled states of trapped atomic ions [J].
Blatt, Rainer ;
Wineland, David .
NATURE, 2008, 453 (7198) :1008-1015
[7]   Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters [J].
Childress, L ;
Taylor, JM ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2005, 72 (05)
[8]   Diamond NV centers for quantum computing and quantum networks [J].
Childress, Lilian ;
Hanson, Ronald .
MRS BULLETIN, 2013, 38 (02) :134-138
[9]   Ultrabright source of entangled photon pairs [J].
Dousse, Adrien ;
Suffczynski, Jan ;
Beveratos, Alexios ;
Krebs, Olivier ;
Lemaitre, Aristide ;
Sagnes, Isabelle ;
Bloch, Jacqueline ;
Voisin, Paul ;
Senellart, Pascale .
NATURE, 2010, 466 (7303) :217-220
[10]   Generation and transfer of single photons on a photonic crystal chip [J].
Englund, Dirk ;
Faraon, Andrei ;
Zhang, Bingyang ;
Yamamoto, Yoshihisa ;
Vuckovic, Jelena .
OPTICS EXPRESS, 2007, 15 (09) :5550-5558