Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability

被引:246
作者
Yang, Jie [1 ]
Tang, Li-Sheng [1 ]
Bao, Rui-Ying [1 ]
Bai, Lu [1 ]
Liu, Zheng-Ying [1 ]
Xie, Bang-Hu [1 ]
Yang, Ming-Bo [1 ]
Yang, Wei [1 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite phase change materials; Hybrid network structure; Shape-stability; Enhanced thermal conductivity; Light-to-electric energy conversion; BIOINSPIRED MODIFICATION; POLYETHYLENE-GLYCOL; STORAGE MATERIALS; CARBON NANOTUBES; PERFORMANCE; DRIVEN; NANOCOMPOSITES; VERMICULITE; MANAGEMENT; ADDITIVES;
D O I
10.1016/j.solmat.2017.08.025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Graphene oxide (GO) and boron nitride (BN) are introduced into polyethylene glycol (PEG) as supporting materials and thermally conductive fillers to improve shape-stability and thermal conductivity. The obtained PEG/BN/GO composite phase change material (PCM) with 4 wt% GO and 30 wt% BN exhibits a thermal conductivity as high as 3.00 W m(-1) K-1, 10-fold higher than that of pure PEG. Owing to the hybrid network structure of GO and BN in the matrix, the shape-stability of the composite PCM is greatly enhanced, even when compressed by a constant normal force of 5 N as the temperature rises to 120 degrees C. Simultaneously, the thermal energy storage density of the composite PCM reaches 107.4 J g(-1), which ensures the potential application to realize an efficient light-to-electric energy conversion and storage. The composite PCM maintains stable thermophysical properties and chemical structure after 100 cycles of melting and freezing. The enhanced comprehensive performance of the composite PCMs contributes to enabling their practical application for effective energy conversion, storage and utilization, especially for the lasting renewable solar energy.
引用
收藏
页码:56 / 64
页数:9
相关论文
共 57 条
[1]   One-Step Preparation of Form-Stable Phase Change Material through Self-Assembly of Fatty Acid and Graphene [J].
Akhiani, Amir Reza ;
Mehrali, Mohammad ;
Latibari, Sara Tahan ;
Mehrali, Mehdi ;
Mahlia, Teuku Meurah Indra ;
Sadeghinezhad, Emad ;
Metselaar, Hendrik Simon Cornelis .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (40) :22787-22796
[2]   Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage [J].
Alkan, Cemil ;
Sari, Ahmet .
SOLAR ENERGY, 2008, 82 (02) :118-124
[3]   Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials [J].
Alkan, Cemil ;
Guenther, Eva ;
Hiebler, Stefan ;
Himpel, Michael .
ENERGY CONVERSION AND MANAGEMENT, 2012, 64 :364-370
[4]   Polyurethane rigid foam composites incorporated with fatty acid ester-based phase change material [J].
Aydin, Ahmet Alper ;
Okutan, Hasancan .
ENERGY CONVERSION AND MANAGEMENT, 2013, 68 :74-81
[5]   The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials [J].
Cui, Yanbin ;
Liu, Caihong ;
Hu, Shan ;
Yu, Xun .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (04) :1208-1212
[6]   Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage [J].
Deng, Yong ;
Li, Jinhong ;
Qian, Tingting ;
Guan, Weimin ;
Li, Yali ;
Yin, Xiaoping .
CHEMICAL ENGINEERING JOURNAL, 2016, 295 :427-435
[7]   The emergence of solar thermal utilization: solar-driven steam generation [J].
Deng, Ziyang ;
Zhou, Jianhua ;
Miao, Lei ;
Liu, Chengyan ;
Peng, Ying ;
Sun, Lixian ;
Tanemura, Sakae .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (17) :7691-7709
[8]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[9]   Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets [J].
Fang, Xin ;
Fan, Li-Wu ;
Ding, Qing ;
Yao, Xiao-Li ;
Wu, Yu-Yue ;
Hou, Jian-Feng ;
Wang, Xiao ;
Yu, Zi-Tao ;
Cheng, Guan-Hua ;
Hu, Ya-Cai .
ENERGY CONVERSION AND MANAGEMENT, 2014, 80 :103-109
[10]   A review on phase change energy storage: materials and applications [J].
Farid, MM ;
Khudhair, AM ;
Razack, SAK ;
Al-Hallaj, S .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (9-10) :1597-1615