Maximum entropy and lacunary Stieltjes moment problem

被引:2
作者
Frontini, M [1 ]
Tagliani, A [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
entropy; lacunary moment problem; Hankel determinants;
D O I
10.1016/S0096-3003(97)10148-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The lacunary Stieltjes moment problem in the framework of the maximum entropy approach is considered. A proof for the existence conditions of the solution is provided. (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:183 / 196
页数:14
相关论文
共 7 条
[1]  
[Anonymous], 1992, ENTROPY OPTIMIZATION, DOI DOI 10.1007/978-94-011-2430
[2]   MAXIMUM-ENTROPY DISTRIBUTIONS HAVING PRESCRIBED FIRST AND SECOND MOMENTS [J].
DOWSON, DC ;
WRAGG, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (05) :689-693
[3]   MAXIMUM-ENTROPY IN THE FINITE STIELTJES AND HAMBURGER MOMENT PROBLEM [J].
FRONTINI, M ;
TAGLIANI, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (12) :6748-6756
[4]   THE EXISTENCE CONDITIONS FOR MAXIMUM-ENTROPY DISTRIBUTIONS, HAVING PRESCRIBED THE 1ST 3 MOMENTS [J].
KOCISZEWSKI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (14) :L823-L827
[5]  
SHOHAT JA, 1963, PROBLEM MOMENTS
[6]   ON THE APPLICATION OF MAXIMUM-ENTROPY TO THE MOMENTS PROBLEM [J].
TAGLIANI, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (01) :326-337
[7]  
[No title captured]