Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application

被引:178
作者
Raj, Balasubramaniam Gnana Sundara [1 ]
Asiri, Abdullah M. [2 ]
Wu, Jerry J. [3 ]
Anandan, Sambandam [1 ]
机构
[1] Natl Inst Technol, Dept Chem, Nanomat & Solar Energy Convers Lab, Tiruchirappalli 620015, India
[2] King Abdulaziz Univ, Faulty Sci, Dept Chem, Jeddah 21413, Saudi Arabia
[3] Feng Chia Univ, Dept Environm Engn & Sci, Taichung 407, Taiwan
关键词
Nanostructures; Chemical synthesis; Electrochemical measurements; Energy storage; LOW-TEMPERATURE SYNTHESIS; ELECTROCHEMICAL PROPERTIES; ASSISTED SYNTHESIS; ELECTRODE MATERIAL; THIN-FILM; ROOM-TEMPERATURE; HIGH-PERFORMANCE; RUTHENIUM OXIDE; MANGANESE OXIDE; MNO2;
D O I
10.1016/j.jallcom.2015.02.164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple chemical precipitation method has been used for the preparation of Mn3O4 nanoparticles at room temperature. The crystal structure and morphology studies of the resulting Mn3O4 nanoparticles were characterized by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), N-2 adsorption and desorption and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of the Mn3O4 nanoparticles were then investigated using cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) analysis. The supercapacitive properties of Mn3O4 nanoparticles in the presence of 1 M Na2SO4 exhibited a high specific capacitance of 322 F g(-1) at a current density of 0.5 mA cm(-2) in the potential range from -0.1 to +0.9 V and about 77% of the initial capacitance was retained after 1000 cycles, indicating that the Mn3O4 electrode owns a good electrochemical stability and capacitance retention capability. The results suggest that the obtained Mn3O4 nanoparticles is a promising electrode material for supercapacitor applications. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:234 / 240
页数:7
相关论文
共 57 条
[1]  
An G., 2008, NANOTECHNOLOGY, V19, P1
[2]   Sonochemical synthesis of manganese (II) hydroxide for supercapacitor applications [J].
Anandan, Sambandam ;
Raj, Balasubramaniam Gnana Sundara ;
Lee, Gang-Juan ;
Wu, Jerry J. .
MATERIALS RESEARCH BULLETIN, 2013, 48 (09) :3357-3361
[3]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[4]   Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials [J].
Beaudrouet, E. ;
La Salle, A. Le Gal ;
Guyomard, D. .
ELECTROCHIMICA ACTA, 2009, 54 (04) :1240-1248
[5]   Nanostructured Ruthenium Oxide Electrodes via High-Temperature Molecular Templating for Use in Electrochemical Capacitors [J].
Brumbach, Michael T. ;
Alam, Todd M. ;
Kotula, Paul G. ;
McKenzie, Bonnie B. ;
Bunker, Bruce C. .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (03) :778-787
[6]   Hierarchically porous MnO2 microspheres with enhanced adsorption performance [J].
Chen, Ruixue ;
Yu, Jiaguo ;
Xiao, Wei .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (38) :11682-11690
[7]   Synthesis of Mn2O3 microstructures and their energy storage ability studies [J].
Chen, Shulin ;
Liu, Fan ;
Xiang, Quanjun ;
Feng, Xionghan ;
Qiu, Guohong .
ELECTROCHIMICA ACTA, 2013, 106 :360-371
[8]   Nucleation site and mechanism leading to growth of bulk-quantity Mn3O4 nanorods -: art. no. 181911 [J].
Chen, ZW ;
Lai, JKL ;
Shek, CH .
APPLIED PHYSICS LETTERS, 2005, 86 (18) :1-3
[9]  
Dai Y., 2007, APPL PHYS LETT, V90
[10]   Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel precursor [J].
Davar, Fatemeh ;
Salavati-Niasari, Masoud ;
Mir, Noshin ;
Saberyan, Kamal ;
Monemzadeh, Majid ;
Ahmadi, Eshagh .
POLYHEDRON, 2010, 29 (07) :1747-1753