DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions

被引:44
作者
Song, Tao [1 ,3 ]
Zhang, Xudong [1 ]
Ding, Mao [1 ,2 ]
Rodriguez-Paton, Alfonso [3 ]
Wang, Shudong [1 ]
Wang, Gan [1 ]
机构
[1] China Univ Petr, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
[2] Shandong Univ, Hosp 2, Cheeloo Coll Med, Dept Neurol Med, Jinan 250033, Peoples R China
[3] Univ Politecn Madrid, Fac Comp Sci, Dept Artificial Intelligence, Campus Montegancedo, Boadilla Del Monte 28660, Madrid, Spain
关键词
Drug-target interaction; Feature extraction; Multi-scale fusion; Deep learning; GABA(A) RECEPTORS; IN-VITRO; QSAR; NORTRIPTYLINE; METABOLITE; MACHINE; OPINION; DOCKING; KINASE; CYP3A4;
D O I
10.1016/j.ymeth.2022.02.007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Predicting drug-target interactions (DTIs) is essential for both drug discovery and drug repositioning. Recently, deep learning methods have achieved relatively significant performance in predicting DTIs. Generally, it needs a large amount of approved data of DTIs to train the model, which is actually tedious to obtain. In this work, we propose DeepFusion, a deep learning based multi-scale feature fusion method for predicting DTIs. To be specific, we generate global structural similarity feature based on similarity theory, convolutional neural network and generate local chemical sub-structure semantic feature using transformer network respectively for both drug and protein. Data experiments are conducted on four sub-datasets of BIOSNAP, which are 100%, 70%, 50% and 30% of BIOSNAP dataset. Particularly, using 70% sub-dataset, DeepFusion achieves ROC-AUC and PR-AUC by 0.877 and 0.888, which is close to the performance of some baseline methods trained by the whole dataset. In case study, DeepFusion achieves promising prediction results on predicting potential DTIs in case study.
引用
收藏
页码:269 / 277
页数:9
相关论文
共 45 条
[1]   Comparison of support vector machine and artificial neural network systems for drug/nondrug classification [J].
Byvatov, E ;
Fechner, U ;
Sadowski, J ;
Schneider, G .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (06) :1882-1889
[2]   Olanzapine - Pharmacokinetic and pharmacodynamic profile [J].
Callaghan, JT ;
Bergstrom, RF ;
Ptak, LR ;
Beasley, CM .
CLINICAL PHARMACOKINETICS, 1999, 37 (03) :177-193
[3]   Computational Prediction of Drug-Target Interactions Using Chemical, Biological, and Network Features [J].
Cao, Dong-Sheng ;
Zhang, Liu-Xia ;
Tan, Gui-Shan ;
Xiang, Zheng ;
Zeng, Wen-Bin ;
Xu, Qing-Song ;
Chen, Alex F. .
MOLECULAR INFORMATICS, 2014, 33 (10) :669-681
[4]   TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments [J].
Chen, Lifan ;
Tan, Xiaoqin ;
Wang, Dingyan ;
Zhong, Feisheng ;
Liu, Xiaohong ;
Yang, Tianbiao ;
Luo, Xiaomin ;
Chen, Kaixian ;
Jiang, Hualiang ;
Zheng, Mingyue .
BIOINFORMATICS, 2020, 36 (16) :4406-4414
[5]  
Daily EB, 2009, PHARMACOGENOMICS, V10, P1489, DOI [10.2217/pgs.09.82, 10.2217/PGS.09.82]
[6]  
Davies M, 2003, J PSYCHIATR NEUROSCI, V28, P263
[7]   Comprehensive analysis of kinase inhibitor selectivity [J].
Davis, Mindy I. ;
Hunt, Jeremy P. ;
Herrgard, Sanna ;
Ciceri, Pietro ;
Wodicka, Lisa M. ;
Pallares, Gabriel ;
Hocker, Michael ;
Treiber, Daniel K. ;
Zarrinkar, Patrick P. .
NATURE BIOTECHNOLOGY, 2011, 29 (11) :1046-U124
[8]   Direct effects of caffeine and theophylline on p110δ and other phosphoinositide 3-kinases -: Differential effects on lipid kinase and protein kinase activities [J].
Foukas, LC ;
Daniele, N ;
Ktori, C ;
Anderson, KE ;
Jensen, J ;
Shepherd, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (40) :37124-37130
[9]  
Gilmer J, 2017, PR MACH LEARN RES, V70
[10]   Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways [J].
Hattori, M ;
Okuno, Y ;
Goto, S ;
Kanehisa, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (39) :11853-11865