A LIOUVILLE TYPE THEOREM TO AN EXTENSION PROBLEM RELATING TO THE HEISENBERG GROUP

被引:5
作者
Wang, Xinjing [1 ]
Niu, Pengcheng [1 ]
Cui, Xuewei [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Heisenberg group; extension problem; Liouville type theorem; generalized CR inversion; moving plane method; FRACTIONAL LAPLACIAN; SEMILINEAR EQUATIONS; ELLIPTIC-EQUATIONS; HARNACK INEQUALITY; MAXIMUM PRINCIPLE; CR MANIFOLDS; CLASSIFICATION; EXISTENCE; SYMMETRY;
D O I
10.3934/cpaa.2018113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a Liouville type theorem for nonnegative cylindrical solutions to the extension problem corresponding to a fractional CR covariant equation on the Heisenberg group by using the generalized CR inversion and the moving plane method.
引用
收藏
页码:2379 / 2394
页数:16
相关论文
共 33 条
[1]  
[Anonymous], 1995, REND SEM MAT UNIV P
[2]  
Berestycki H., 1993, BOUND VALUE PROBL PA, V29, P27
[3]   Liouville theorems for semilinear equations on the Heisenberg group [J].
Birindelli, I ;
Dolcetta, IC ;
Cutri, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :295-308
[4]   Monotonicity and symmetry results for degenerate elliptic equations on nilpotent lie groups [J].
Birindelli, I ;
Prajapat, J .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 204 (01) :1-17
[5]  
Birindelli I, 1999, COMMUN PART DIFF EQ, V24, P1875
[6]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[8]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[9]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[10]  
Chen W., 2010, AIMS Book Series, V4