Symmetries of first-order stochastic ordinary differential equations revisited

被引:19
作者
Fredericks, E. [1 ]
Mahomed, F. M. [1 ]
机构
[1] Univ Witwatersrand, Sch Computat & Appl Math, Ctr Differential Equat Contium Mech & Applicat, ZA-2050 Wits, South Africa
关键词
stationary processes; symmetries; invariants;
D O I
10.1002/mma.942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Symmetries of stochastic ordinary differential equations (SODEs) are analysed. This work focuses on maintaining the properties of the Weiner processes after the application of infinitesimal transformations. The determining equations (DEs) for first-order SODEs are derived in an Ito calculus context. These DEs are non-stochastic. This article reconciles earlier works in this area. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:2013 / 2025
页数:13
相关论文
共 11 条
  • [1] [Anonymous], 2002, BASIC STOCHASTIC PRO
  • [2] Bobrowski A., 2005, FUNCTIONAL ANAL PROB
  • [3] Freidlin M., 1985, FUNCTIONAL INTEGRATI
  • [4] Lie-point symmetries and stochastic differential equations
    Gaeta, G
    Quintero, NR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8485 - 8505
  • [5] Lie-point symmetries and stochastic differential equations: II
    Gaeta, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (27): : 4883 - 4902
  • [6] ksendal B., 1998, Stochastic Differential Equations: An Introduction with Applications, V6th, DOI [10.1007/978-3-662-03620-4, DOI 10.1007/978-3-662-03620-4]
  • [7] OKSENDAL B, 1990, J THEOR PROBAB, V3, P207, DOI DOI 10.1007/BF01045159
  • [8] REVUZ D, 2005, CONTINUOUS MARINGALE
  • [9] On the definition of an admitted Lie group for stochastic differential equations
    Srihirun, Boonlert
    Meleshko, Sergey V.
    Schulz, Eckart
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (08) : 1379 - 1389
  • [10] Symmetries of It(o)over-cap and Stratonovich dynamical systems and their conserved quantities
    Ünal, G
    [J]. NONLINEAR DYNAMICS, 2003, 32 (04) : 417 - 426