Robust automated computational approach for classifying frontotemporal neurodegeneration: Multimodal/multicenter neuroimaging

被引:39
作者
Donnelly-Kehoe, Patricio Andres [1 ,2 ]
Pascariello, Guido Orlando [1 ,2 ]
Garcia, Adolfo M. [3 ,4 ,5 ]
Hodges, John R. [6 ,7 ,8 ]
Miller, Bruce [9 ]
Rosen, Howie [10 ]
Manes, Facundo [3 ,4 ,6 ]
Landin-Romero, Ramon [6 ,7 ,11 ]
Matallana, Diana [12 ]
Serrano, Cecilia [13 ,14 ]
Herrera, Eduar [15 ]
Reyes, Pablo [16 ,17 ]
Santamaria-Garcia, Hernando [16 ,17 ]
Kumfor, Fiona [6 ,7 ,11 ]
Piguet, Olivier [6 ,7 ,11 ]
Ibanez, Agustin [3 ,4 ,6 ,18 ,19 ]
Sedeno, Lucas [3 ,4 ]
机构
[1] Natl Sci & Tech Res Council CONICET, French Argentine Int Ctr Informat & Syst Sci CIFA, Neuroimage Div, Multimedia Signal Proc Grp, Rosario, Argentina
[2] INECO Fdn Rosario, Lab Neuroimaging & Neurosci LANEN, Rosario, Argentina
[3] Favaloro Univ, INECO Fdn, Inst Cognit & Translat Neurosci INCyT, Lab Expt Psychol & Neurosci LPEN, Buenos Aires, DF, Argentina
[4] Natl Sci & Tech Res Council CONICET, Buenos Aires, DF, Argentina
[5] Natl Univ Cuyo UNCuyo, Fac Educ, Mendoza, Argentina
[6] Australian Res Council ARC, Ctr Excellence Cognit & Its Disorders, Sydney, NSW, Australia
[7] Univ Sydney, Brain & Mind Ctr, Sydney, NSW, Australia
[8] Univ Sydney, Clin Med Sch, Sydney, NSW, Australia
[9] Univ Calif San Francisco, Memory & Aging Ctr, San Francisco, CA 94143 USA
[10] Univ Calif San Francisco, Dept Neurol, Memory Aging Ctr, San Francisco, CA USA
[11] Univ Sydney, Sch Psychol, Sydney, NSW, Australia
[12] Pontificia Univ Javeriana PUJ, Med Sch, Aging Inst Psychiat & Mental Hlth, Bogota, Colombia
[13] Memory & Balance Clin, Buenos Aires, DF, Argentina
[14] Dr Cesar Milstein Hosp, Dept Neurol, Buenos Aires, DF, Argentina
[15] Univ ICESI, Dept Estudios Psicol, Cali, Colombia
[16] Hosp Univ San Ignacio HUSI, Radiol, Bogota, Colombia
[17] Pontificia Univ Javeriana, Hosp Univ San Ignacio, Ctr Memoria & Cognic Intellectus, Dept Physiol & Psychiat, Bogota, Colombia
[18] Univ Autonoma Caribe, Barranquilla, Colombia
[19] Univ Adolfo Ibanez, Sch Psychol, Ctr Social & Cognit Neurosci CSCN, Santiago, Chile
基金
澳大利亚国家健康与医学研究理事会; 澳大利亚研究理事会; 英国医学研究理事会;
关键词
Dementia; bvFTD; Data-driven computational approaches; Classifiers; Neuroimaging; BEHAVIORAL VARIANT; ALZHEIMERS-DISEASE; FUNCTIONAL CONNECTIVITY; BRAIN CONNECTIVITY; CEREBRAL-CORTEX; DEMENTIA; MULTICENTER; PERSPECTIVE; DIAGNOSIS; REGIONS;
D O I
10.1016/j.dadm.2019.06.002
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: Timely diagnosis of behavioral variant frontotemporal dementia (bvFTD) remains challenging because it depends on clinical expertise and potentially ambiguous diagnostic guidelines. Recent recommendations highlight the role of multimodal neuroimaging and machine learning methods as complementary tools to address this problem. Methods: We developed an automatic, cross-center, multimodal computational approach for robust classification of patients with bvFTD and healthy controls. We analyzed structural magnetic resonance imaging and resting-state functional connectivity from 44 patients with bvFTD and 60 healthy controls (across three imaging centers with different acquisition protocols) using a fully automated processing pipeline, including site normalization, native space feature extraction, and a random forest classifier. Results: Our method successfully combined multimodal imaging information with high accuracy (91%), sensitivity (83.7%), and specificity (96.6%). Discussion: This multimodal approach enhanced the system's performance and provided a clinically informative method for neuroimaging analysis. This underscores the relevance of combining multimodal imaging and machine learning as a gold standard for dementia diagnosis. (C) 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association.
引用
收藏
页码:588 / 598
页数:11
相关论文
共 46 条
  • [1] Looking for Alzheimer's Disease morphometric signatures using machine learning techniques
    Andres Donnelly-Kehoe, Patricio
    Orlando Pascariello, Guido
    Carlos Gomez, Juan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2018, 302 : 24 - 34
  • [2] Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls
    Arbabshirani, Mohammad R.
    Plis, Sergey
    Sui, Jing
    Calhoun, Vince D.
    [J]. NEUROIMAGE, 2017, 145 : 137 - 165
  • [3] Comparing Moral Judgments of Patients With Frontotemporal Dementia and Frontal Stroke
    Baez, Sandra
    Couto, Blas
    Torralva, Teresa
    Sposato, Luciano A.
    Huepe, David
    Montanes, Patricia
    Reyes, Pablo
    Matallana, Diana
    Vigliecca, Nora S.
    Slachevsky, Andrea
    Manes, Facundo
    Ibanez, Agustin
    [J]. JAMA NEUROLOGY, 2014, 71 (09) : 1172 - 1176
  • [4] Ageing, Neuronal Connectivity and Brain Disorders: An Unsolved Ripple Effect
    Bano, Daniele
    Agostini, Massimiliano
    Melino, Gerry
    Nicotera, Pierluigi
    [J]. MOLECULAR NEUROBIOLOGY, 2011, 43 (02) : 124 - 130
  • [5] FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI
    BISWAL, B
    YETKIN, FZ
    HAUGHTON, VM
    HYDE, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) : 537 - 541
  • [6] Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI
    Bron, Esther E.
    Smits, Marion
    Papma, Janne M.
    Steketee, Rebecca M. E.
    Meijboom, Rozanna
    de Groot, Marius
    van Swieten, John C.
    Niessen, Wiro J.
    Klein, Stefan
    [J]. EUROPEAN RADIOLOGY, 2017, 27 (08) : 3372 - 3382
  • [7] Normalization of cortical thickness measurements across different T1 magnetic resonance imaging protocols by novel W-Score standardization
    Chung, Jinyong
    Yoo, Kwangsun
    Lee, Peter
    Kim, Chan Mi
    Roh, Jee Hoon
    Park, Ji Eun
    Kim, Sang Joon
    Seo, Sang Won
    Shin, Jeong-Hyeon
    Seong, Joon-Kyung
    Jeong, Yong
    [J]. NEUROIMAGE, 2017, 159 : 224 - 235
  • [8] A comparison of voxel and surface based cortical thickness estimation methods
    Clarkson, Matthew J.
    Cardoso, M. Jorge
    Ridgway, Gerard R.
    Modat, Marc
    Leung, Kelvin K.
    Rohrer, Jonathan D.
    Fox, Nick C.
    Ourselin, Sebastien
    [J]. NEUROIMAGE, 2011, 57 (03) : 856 - 865
  • [9] Computational approaches to fMRI analysis
    Cohen, Jonathan D.
    Daw, Nathaniel
    Engelhardt, Barbara
    Hasson, Uri
    Li, Kai
    Niv, Yael
    Norman, Kenneth A.
    Pillow, Jonathan
    Ramadge, Peter J.
    Turk-Browne, Nicholas B.
    Willke, Theodore L.
    [J]. NATURE NEUROSCIENCE, 2017, 20 (03) : 304 - 313
  • [10] Cordes D, 2001, AM J NEURORADIOL, V22, P1326