Graphene Oxide Nanosheets with Efficient Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus (MRSA)

被引:13
作者
Gao, Yujie [1 ,2 ]
Dong, Yuanhao [1 ]
Cao, Yubin [1 ,3 ]
Huang, Wenlong [1 ]
Yu, Chenhao [1 ]
Sui, Shangyan [1 ]
Mo, Anchun [2 ]
Peng, Qiang [1 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, State Key Lab Oral Dis, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, Dept Oral Implantol, Chengdu 610041, Peoples R China
[3] Sichuan Univ, West China Hosp Stomatol, Dept Oral & Maxillofaci3I Surg, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanomaterials; Graphene Oxide; Antibacterial; MRSA; Infection; DRUG-DELIVERY; NANOPARTICLES; NANOMATERIALS; POTENTIALS; ADSORPTION;
D O I
10.1166/jbn.2021.3123
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of drug-resistant bacteria has become a public health problem, among which methicillin-resistant Staphylococcus aureus (MRSA) leads to various life-threatening diseases. Graphene oxide (GO) is a two-dimensional nanomaterial with potential in the anti-MRSA treatment. This study prepared GO nanosheets with fixed lamellar size, investigated its antibacterial activity against MRSA, and analyzed the related antibacterial mechanisms. We found that the fabrication of GO with stable dispersion was workable. Furthermore, such GO had superior antibacterial performance against MRSA at low concentrations with the dose-dependent anti-MRSA effect. The GO-MRSA interaction also provided fundamental support for the antibacterial mechanisms with cleavage and encapsulation effects. In conclusion, GO nanosheets may be a promising antimicrobial agent against MRSA.
引用
收藏
页码:1627 / 1634
页数:8
相关论文
共 38 条
[1]  
Bruniera FR, 2015, EUR REV MED PHARMACO, V19, P694
[2]  
Chen Y., 2020, J CONTROL RELEASE, V328, P251, DOI DOI 10.1016/j.jconrel.2020.08.055
[3]   Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence [J].
Christaki, Eirini ;
Marcou, Markella ;
Tofarides, Andreas .
JOURNAL OF MOLECULAR EVOLUTION, 2020, 88 (01) :26-40
[4]  
Galar A, 2019, CLIN MICROBIOL REV, V32, DOI [10.1128/CMR.00041-18, 10.1128/cmr.00041-18]
[5]   Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus [J].
Gao, Yujie ;
Chen, Yuan ;
Cao, Yubin ;
Mo, Anchun ;
Peng, Qiang .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2021, 213
[6]   Enhancing the Bioavailability of Silver Through Nanotechnology Approaches Could Overcome Efflux Pump Mediated Silver Resistance in Methicillin Resistant Staphylococcus aureus [J].
George, Saji ;
Tay, Ignacius ;
Phue, Wut Hmone ;
Gardner, Hannah ;
Sukumaran, Bindu .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2019, 15 (11) :2216-2228
[7]   Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) clones with high-level mupirocin resistance [J].
Gonzalez-Dominguez, Maria ;
Seral, Cristina ;
Potel, Carmen ;
Saenz, Yolanda ;
Alvarez, Maximiliano ;
Torres, Carmen ;
Javier Castillo, Francisco .
DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2016, 85 (02) :213-217
[8]   Biomolecule chitosan, curcumin and ZnO-based antibacterial nanomaterial, via a one-pot process [J].
Karthikeyan, Chandrasekaran ;
Varaprasad, Kokkarachedu ;
Akbari-Fakhrabadi, Ali ;
Hameed, Abdulrahman Syedahamed Haja ;
Sadiku, Rotimi .
CARBOHYDRATE POLYMERS, 2020, 249
[9]   Time-dependent study of graphene oxide-trypsin adsorption interface and visualization of nano-protein corona [J].
Kumari, Sujata ;
Sharma, Pratibha ;
Ghosh, Debasree ;
Shandilya, Manish ;
Rawat, Pooja ;
Hassan, Md Imtaiyaz ;
Moulick, Ranjita Ghosh ;
Bhattacharya, Jaydeep ;
Srivastava, Chandramohan ;
Majumder, Sudip .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 163 :2259-2269
[10]  
Lakhundi S, 2018, CLIN MICROBIOL REV, V31, DOI [10.1128/CMR.00020-18, 10.1128/cmr.00020-18]