The fractional Fick's law for non-local transport processes

被引:135
作者
Paradisi, P
Cesari, R
Mainardi, F
Tampieri, F
机构
[1] Univ Bologna, Dipartimento Ingn Energet Nucl & Controllo Ambien, I-40136 Bologna, Italy
[2] ISAO, CNR, I-40129 Bologna, Italy
[3] ARPA, Serv Meteorol Reg, I-40122 Bologna, Italy
[4] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy
[5] Sezione Bologna, Ist Nazl Fis Nucl, I-40126 Bologna, Italy
关键词
diffusion; stable probability distributions; fractional derivatives;
D O I
10.1016/S0378-4371(00)00491-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fick's law is extensively adopted as a model for standard diffusion processes. However, requiring separation of scales, it is not suitable for describing non-local transport processes. We discuss a generalized non-local Fick's law derived from the space-fractional diffusion equation generating the Livy-Feller statistics. This means that the fundamental solutions can be interpreted as Levy stable probability densities (in the Feller parameterization) with index alpha (1 < alpha greater than or equal to 2) and skewness theta (\theta\ less than or equal to 2 - alpha). We explore the possibility of defining an equivalent local diffusivity by displaying a few numerical case studies concerning the relevant quantities (flux and gradient). It turns out that the presence of asymmetry (theta not equal 0) plays a fundamental role: it produces shift of the maximum location of the probability density function and gives raise to phenomena of counter-gradient transport. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:130 / 142
页数:13
相关论文
共 32 条
[1]   Comment on "A fractional diffusion equation to describe Levy flights" by A.S. Chaves [J].
Almeida, MP .
PHYSICS LETTERS A, 1998, 249 (5-6) :560-561
[2]   A fractional diffusion equation to describe Levy flights [J].
Chaves, AS .
PHYSICS LETTERS A, 1998, 239 (1-2) :13-16
[3]   Stochastic foundations of fractional dynamics [J].
Compte, A .
PHYSICAL REVIEW E, 1996, 53 (04) :4191-4193
[4]  
FELLER W, 1952, COMM SEM MATH U LUND, P73
[5]  
Feller W., 1971, An introduction to probability theory and its applications, V2
[6]  
Gnedenko B. V., 1954, ADDISON WESLEY MATH
[7]   Discrete random walk models for symmetric Levy-Feller diffusion processes [J].
Gorenflo, R ;
De Fabritiis, G ;
Mainardi, F .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 269 (01) :79-89
[8]  
Gorenflo R, 1999, Z ANAL ANWEND, V18, P231
[9]  
Gorenflo R., 1998, Fract. Calc. Appl. Anal., V1, P167
[10]   FRACTIONAL MASTER-EQUATIONS AND FRACTAL TIME RANDOM-WALKS [J].
HILFER, R ;
ANTON, L .
PHYSICAL REVIEW E, 1995, 51 (02) :R848-R851