Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering

被引:98
|
作者
Chen, Honglin [1 ,2 ]
Huang, Xiaobin [2 ]
Zhang, Minmin [3 ]
Damanik, Febriyani [1 ]
Baker, Matthew B. [1 ]
Leferink, Anne [1 ]
Yuan, Huipin [1 ]
Truckenmuller, Roman [1 ]
van Blitterswijk, Clemens [1 ]
Moroni, Lorenzo [1 ]
机构
[1] MERLN Inst Technol Inspired Regenerat Med, Dept Complex Tissue Regenerat, NL-6200 MD Maastricht, Netherlands
[2] Univ Twente, MIRA Inst Biomed Technol & Tech Med, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Res Inst, NL-7500 AE Enschede, Netherlands
关键词
Surface roughness; Tissue engineering; Scaffold; Cell differentiation; Human mesenchymal stromal cells; MESENCHYMAL STEM-CELLS; OSTEOGENIC DIFFERENTIATION; NANOFIBROUS SCAFFOLDS; RELATIVE-HUMIDITY; FIBER DIAMETER; STROMAL CELLS; PORE-SIZE; IN-VITRO; MORPHOLOGY; ROUGHNESS;
D O I
10.1016/j.actbio.2017.07.003
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electrospun scaffolds provide a promising approach for tissue engineering as they mimic the physical properties of extracellular matrix. Previous studies have demonstrated that electrospun scaffolds with porous features on the surface of single fibers, enhanced cellular attachment and proliferation. Yet, little is known about the effect of such topographical cues on cellular differentiation. Here, we aimed at investigating the influence of surface roughness of electrospun scaffolds on skeletal differentiation of human mesenchymal stromal cells (hMSCs). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the surface nanoroughness of fibers was successfully regulated via humidity control of the electrospinning environment. Gene expression analysis revealed that a higher surface roughness (roughness average (Ra) = 71.0 +/- 11.0 nm) supported more induction of osteogenic genes such as osteopontin (OPN), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2), while a lower surface roughness (Ra = 14.3 +/- 2.5 nm) demonstrated higher expression of other osteogenic genes including bone sialoprotein (BSP), collagen type I (COL1A1) and osteocalcin (OCN). Interestingly, a lower surface roughness (Ra = 14.3 +/- 2.5 nm) better supported chondrogenic gene expression of hMSCs at day 7 compared to higher surface roughness (Ra = 71.0 +/- 11.0 nm). Taken together, modulating surface roughness of 3D scaffolds appears to be a significant factor in scaffold design for the control of skeletal differentiation of hMSCs. Statement of Significance Tissue engineering scaffolds having specific topographical cues offer exciting possibilities for stimulating cells differentiation and growth of new tissue. Although electrospun scaffolds have been extensively investigated in tissue engineering and regenerative medicine, little is known about the influence of introducing nanoroughness on their surface for cellular differentiation. The present study provides a method to engineer electrospun scaffolds with tailoring surface nanoroughness and investigates the effect of such topographical cues on the process of human mesenchymal stromal cells differentiation into osteoblasts and chondrocytes linages. This strategy may help the design of nanostructured scaffolds for skeletal tissue engineering. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 93
页数:12
相关论文
共 50 条
  • [1] Electrospun Scaffolds for Tissue Engineering: A Review
    Flores-Rojas, Guadalupe Gabriel
    Gomez-Lazaro, Belen
    Lopez-Saucedo, Felipe
    Vera-Graziano, Ricardo
    Bucio, Emilio
    Mendizabal, Eduardo
    MACROMOL, 2023, 3 (03): : 524 - 553
  • [2] Porous biomaterial scaffolds for skeletal muscle tissue engineering
    Kozan, Natalie G.
    Joshi, Mrunmayi
    Sicherer, Sydnee T.
    Grasman, Jonathan M.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [3] Advances in electrospun scaffolds for meniscus tissue engineering and regeneration
    Wang, Xiaoyu
    Ding, Yangfan
    Li, Haiyan
    Mo, Xiumei
    Wu, Jinglei
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2022, 110 (04) : 923 - 949
  • [4] Electrospun scaffolds for tissue engineering of vascular grafts
    Hasan, Anwarul
    Memic, Adnan
    Annabi, Nasim
    Hossain, Monowar
    Paul, Arghya
    Dokmeci, Mehmet R.
    Dehghani, Fariba
    Khademhosseini, Ali
    ACTA BIOMATERIALIA, 2014, 10 (01) : 11 - 25
  • [5] Impact of sterilization methods on electrospun scaffolds for tissue engineering
    Rediguieri, Carolina Fracalossi
    Sassonia, Rogerio Corte
    Dua, Kamal
    Kikuchi, Irene Satiko
    Andreoli Pinto, Terezinha de Jesus
    EUROPEAN POLYMER JOURNAL, 2016, 82 : 181 - 195
  • [6] Applications of electrospun scaffolds with enlarged pores in tissue engineering
    Zhang, Yuangeng
    Zhang, Miaomiao
    Cheng, Duanrui
    Xu, Shixin
    Du, Chen
    Xie, Li
    Zhao, Wen
    BIOMATERIALS SCIENCE, 2022, 10 (06) : 1423 - 1447
  • [7] Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering
    Chen, Yujie
    Dong, Xutao
    Shafiq, Muhammad
    Myles, Gregory
    Radacsi, Norbert
    Mo, Xiumei
    ADVANCED FIBER MATERIALS, 2022, 4 (05) : 959 - 986
  • [8] Multilayered Electrospun Scaffolds for Tendon Tissue Engineering
    Chainani, Abby
    Hippensteel, Kirk J.
    Kishan, Alysha
    Garrigues, N. William
    Ruch, David S.
    Guilak, Farshid
    Little, Dianne
    TISSUE ENGINEERING PART A, 2013, 19 (23-24) : 2594 - 2604
  • [9] Electrospun polycaprolactone scaffolds for tissue engineering: a review
    Janmohammadi, M.
    Nourbakhsh, M. S.
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (09) : 527 - 539
  • [10] Electrospun Scaffolds for Corneal Tissue Engineering: A Review
    Kong, Bin
    Mi, Shengli
    MATERIALS, 2016, 9 (08):