Backlund transformation and multi-soliton solutions for a (2+1)-dimensional Korteweg-de Vries system via symbolic computation

被引:6
作者
Geng, Tao [1 ]
Meng, Xiang-Hua [1 ]
Shan, Wen-Rui [1 ]
Tian, Bo [1 ,2 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
关键词
N-soliton solution; Backlund transformation; Bilinear form; Symbolic computation; NONLINEAR SCHRODINGER-EQUATION; SOLITON-SOLUTIONS; DARBOUX; FORM;
D O I
10.1016/j.amc.2009.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the (2 + 1)-dimensional Korteweg-de Vries system is symbolically investigated. By the bilinear method, the N-soliton solution is presented. Then, based on the Backlund transformation in bilinear form, a new Backlund transformation is obtained and new representation of the N-soliton solution is derived. A class of novel multi-soliton solutions are obtained by the new Backlund transformation and the availability of symbolic computation is demonstrated. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1470 / 1475
页数:6
相关论文
共 30 条
[1]  
[Anonymous], 1980, Solitons
[2]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[3]   Darboux transformation and soliton solutions for Boussinesq-Burgers equation [J].
Chen, AH ;
Li, XM .
CHAOS SOLITONS & FRACTALS, 2006, 27 (01) :43-49
[4]   PAINLEVE ANALYSIS OF THE NONLINEAR SCHRODINGER FAMILY OF EQUATIONS [J].
CLARKSON, PA ;
COSGROVE, CM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (08) :2003-2024
[5]   Backlund transformation and soliton solutions for KP equation [J].
Deng, SF .
CHAOS SOLITONS & FRACTALS, 2005, 25 (02) :475-480
[6]   Darboux and Backlund transformations for the nonisospectral KP equation [J].
Deng, Shu-Fang ;
Qin, Zhen-Yun .
PHYSICS LETTERS A, 2006, 357 (06) :467-474
[7]  
Durovsky V.G., 1994, J PHYS A, V27, P4619
[8]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[9]   A new application of Riccati equation to some nonlinear evolution equations [J].
Geng, Tao ;
Shan, Wen-Rui .
PHYSICS LETTERS A, 2008, 372 (10) :1626-1630
[10]   N-SOLITON SOLUTIONS OF MODEL EQUATIONS FOR SHALLOW-WATER WAVES [J].
HIROTA, R ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1976, 40 (02) :611-612