Design and Testing of a Constrained Data-Driven Iterative Reference Input Tuning Algorithm

被引:0
|
作者
Radac, Mircea-Bogdan [1 ]
Precup, Radu-Emil [1 ]
Petriu, Emil M. [2 ]
机构
[1] Politehn Univ Timisoara, Dept Automat & Appl Informat, Timisoara 300223, Romania
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents aspects concerning the design and testing of a new data-driven Iterative Reference Input Tuning (IRIT) algorithm that solves a reference trajectory tracking problem expressed as an optimization problem with control signal saturation constraints and control signal rate constraints. The design of the IRIT algorithm uses an experiment-based stochastic search algorithm formulated in the framework of Iterative Learning Control (ILC) in order to combine the advantages of data-driven control and of ILC. The iterative tuning is model-free in the sense it does not use control system models. A set of simulation results tests and validates the IRIT algorithm in a case study related to a representative mechatronics application that deals with the position control of a nonlinear aero-dynamical system. The IRIT algorithm offers the performance improvement by few iterations and experiments conducted on the process.
引用
收藏
页码:2034 / 2039
页数:6
相关论文
共 50 条
  • [1] Model-free constrained data-driven iterative reference input tuning algorithm with experimental validation
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2016, 45 (04) : 455 - 476
  • [2] Constrained Data-Driven Model-Free ILC-based Reference Input Tuning Algorithm
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Petriu, Emil M.
    ACTA POLYTECHNICA HUNGARICA, 2015, 12 (01) : 137 - 160
  • [3] A learning algorithm for a Data-driven Controller based on Fictitious Reference Iterative Tuning
    Wakitani, Shin
    Yamamoto, Tofu
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4908 - 4913
  • [4] Optimal input design for direct data-driven tuning of model-reference controllers
    Formentin, Simone
    Karimi, Alireza
    Savaresi, Sergio M.
    AUTOMATICA, 2013, 49 (06) : 1874 - 1882
  • [5] Constrained data-driven optimal iterative learning control
    Chi, Ronghu
    Liu, Xiaohe
    Zhang, Ruikun
    Hou, Zhongsheng
    Huang, Biao
    JOURNAL OF PROCESS CONTROL, 2017, 55 : 10 - 29
  • [6] Data-driven adaptive tuning of iterative learning control
    Yu, Yingzhen
    Lin, Na
    Chi, Ronghu
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2022, 44 (15) : 3016 - 3027
  • [7] Constrained Data-Driven Controller Tuning for Nonlinear Systems
    Radac, Mircea-Bogdan
    Precup, Radu-Emil
    Preitl, Stefan
    Dragos, Claudia-Adina
    Petriu, Emil M.
    39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2013), 2013, : 3404 - 3409
  • [8] Data-Driven Algorithm Design
    Gupta, Rishi
    Roughgarden, Tim
    COMMUNICATIONS OF THE ACM, 2020, 63 (06) : 87 - 94
  • [9] A framework for data-driven algorithm testing
    Funk, W
    Kirchner, D
    Security, Steganography, and Watermarking of Multimedia Contents VII, 2005, 5681 : 287 - 297
  • [10] Time and Frequency Domain Data-driven PID Iterative Tuning
    da Silva Moreira, Lucas Jose
    Acioli Junior, George
    Barros, Pericles Rezende
    IFAC PAPERSONLINE, 2018, 51 (15): : 1056 - 1061